正规化方程Normal Equations解析

2023-11-02 00:41

本文主要是介绍正规化方程Normal Equations解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  如果需要代做算法,可以联系我...博客右侧有联系方式。

一、正规化方程概念

  假设我们有m个样本。特征向量的维度为n。因此,可知样本为{(x(1),y(1)), (x(2),y(2)),... ..., (x(m),y(m))},其中对于每一个样本中的x(i),都有x(i)={x1(i), xn(i),... ...,xn(i)}。令 H(θ)=θ+ θ1x1 +θ2x+... + θnxn,则有

  若希望H(θ)=Y,则有

  X · θ = Y

  我们先来回忆一下两个概念:单位矩阵 和 矩阵的逆,看看它们有什么性质。

  (1)单位矩阵E

  AE=EA=A

  (2)矩阵的逆A-1

  要求:A必须为方阵

  性质:AA-1=A-1A=E

  再来看看式子 X · θ = Y

  若想求出θ,那么我们需要做一些转换:

  step1:先把θ左边的矩阵变成一个方阵。通过乘以XT可以实现,则有

  XTX · θ = XTY

  step2:把θ左边的部分变成一个单位矩阵,这样就可以让它消失于无形了……

  (XTX)-1(XTX) · θ = (XTX)-1XTY

  step3:由于(XTX)-1(XTX) = E,因此式子变为

  Eθ = (XTX)-1XTY

  E可以去掉,因此得到

  θ = (XTX)-1XTY

  这就是我们所说的Normal Equation了。

二、Normal Equation VS Gradient Descent

  Normal Equation 跟 Gradient Descent(梯度下降)一样,可以用来求权重向量θ。但它与Gradient Descent相比,既有优势也有劣势。

  优势:Normal Equation可以不在意x特征的scale。比如,有特征向量X={x1, x2}, 其中x1的range为1~2000,而x2的range为1~4,可以看到它们的范围相差了500倍。如果使用Gradient Descent方法的话,会导致椭圆变得很窄很长,而出现梯度下降困难,甚至无法下降梯度(因为导数乘上步长后可能会冲出椭圆的外面)。但是,如果用Normal Equation方法的话,就不用担心这个问题了。因为它是纯粹的矩阵算法。

  劣势:相比于Gradient Descent,Normal Equation需要大量的矩阵运算,特别是求矩阵的逆。在矩阵很大的情况下,会大大增加计算复杂性以及对计算机内存容量的要求。

  什么情况下会出现Normal Equation,该如何应对?

  (1)当特征向量的维度过多时(如,m <= n 时)

   解决方法:① 使用regularization方式

     or ②delete一些特征维度

  (2)有redundant features(也称为linearly dependent feature)

  例如, x1= size in feet2

    x2 = size in m2

  feet和m的换算为 1m≈3.28feet所以,x1 ≈ 3.28* x2, 因此x1和x2是线性相关的(也可以说x1和x2之间有一个是冗余的)

  解决方法:找出冗余的特征维度,删除之。

三、例子

  y(i)表示价格,x(i)表示房屋面积和房间数:

  样本数m=47。

  step1:对数据进行预处理

  给每一个x向量,都增加一个x0=1的分量。

m = 47;
x=[ones(m,1),ex3x];

  查看x矩阵:

  step2:带入normal equation公式θ = (XTX)-1XTY,求解权重向量。

 y=ex3y;theta = inv(x'*x)*x'*y;

求得θ向量为

  如果我想预计“1650-square-foot house with 3 bedrooms”的价格,那么由X * θ = Y可知:

price = [1,1650,3]* theta ;

  我们取消matlab中的科学计数法,看看price的价格是多少:

>> format long g
>> price

  price =  293081.464334897

  我们在给出的样本中,找一个接近的样本比比看:

  23号样本的房屋面积为1604,房间数也为3,它的价格为

  我们可以尝试画出H(θ)函数的图像看看:

  先分别用min和max函数找出房屋面积(x1)和房间个数(x2)的最大和最小值,有

  x1∈[852,4478]

  x2∈[1,5]

x1=linspace(852,4478,47);
x2=linspace(1,5,47);
[xx1,xx2]=meshgrid(x1,x2);
h_theta = theta(1)*ones(47,47) + theta(2)*xx1 + theta(3)*xx2;
surf(xx1,xx2,h_theta);

  可以看到H(θ)为如下平面:

   梯度下降需要预先确定学习速率、迭代次数,和数据规范化  Feature Scaling。

这篇关于正规化方程Normal Equations解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326922

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提

Java中的runnable 和 callable 区别解析

《Java中的runnable和callable区别解析》Runnable接口用于定义不需要返回结果的任务,而Callable接口可以返回结果并抛出异常,通常与Future结合使用,Runnab... 目录1. Runnable接口1.1 Runnable的定义1.2 Runnable的特点1.3 使用Ru

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente