正规化方程Normal Equations解析

2023-11-02 00:41

本文主要是介绍正规化方程Normal Equations解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  如果需要代做算法,可以联系我...博客右侧有联系方式。

一、正规化方程概念

  假设我们有m个样本。特征向量的维度为n。因此,可知样本为{(x(1),y(1)), (x(2),y(2)),... ..., (x(m),y(m))},其中对于每一个样本中的x(i),都有x(i)={x1(i), xn(i),... ...,xn(i)}。令 H(θ)=θ+ θ1x1 +θ2x+... + θnxn,则有

  若希望H(θ)=Y,则有

  X · θ = Y

  我们先来回忆一下两个概念:单位矩阵 和 矩阵的逆,看看它们有什么性质。

  (1)单位矩阵E

  AE=EA=A

  (2)矩阵的逆A-1

  要求:A必须为方阵

  性质:AA-1=A-1A=E

  再来看看式子 X · θ = Y

  若想求出θ,那么我们需要做一些转换:

  step1:先把θ左边的矩阵变成一个方阵。通过乘以XT可以实现,则有

  XTX · θ = XTY

  step2:把θ左边的部分变成一个单位矩阵,这样就可以让它消失于无形了……

  (XTX)-1(XTX) · θ = (XTX)-1XTY

  step3:由于(XTX)-1(XTX) = E,因此式子变为

  Eθ = (XTX)-1XTY

  E可以去掉,因此得到

  θ = (XTX)-1XTY

  这就是我们所说的Normal Equation了。

二、Normal Equation VS Gradient Descent

  Normal Equation 跟 Gradient Descent(梯度下降)一样,可以用来求权重向量θ。但它与Gradient Descent相比,既有优势也有劣势。

  优势:Normal Equation可以不在意x特征的scale。比如,有特征向量X={x1, x2}, 其中x1的range为1~2000,而x2的range为1~4,可以看到它们的范围相差了500倍。如果使用Gradient Descent方法的话,会导致椭圆变得很窄很长,而出现梯度下降困难,甚至无法下降梯度(因为导数乘上步长后可能会冲出椭圆的外面)。但是,如果用Normal Equation方法的话,就不用担心这个问题了。因为它是纯粹的矩阵算法。

  劣势:相比于Gradient Descent,Normal Equation需要大量的矩阵运算,特别是求矩阵的逆。在矩阵很大的情况下,会大大增加计算复杂性以及对计算机内存容量的要求。

  什么情况下会出现Normal Equation,该如何应对?

  (1)当特征向量的维度过多时(如,m <= n 时)

   解决方法:① 使用regularization方式

     or ②delete一些特征维度

  (2)有redundant features(也称为linearly dependent feature)

  例如, x1= size in feet2

    x2 = size in m2

  feet和m的换算为 1m≈3.28feet所以,x1 ≈ 3.28* x2, 因此x1和x2是线性相关的(也可以说x1和x2之间有一个是冗余的)

  解决方法:找出冗余的特征维度,删除之。

三、例子

  y(i)表示价格,x(i)表示房屋面积和房间数:

  样本数m=47。

  step1:对数据进行预处理

  给每一个x向量,都增加一个x0=1的分量。

m = 47;
x=[ones(m,1),ex3x];

  查看x矩阵:

  step2:带入normal equation公式θ = (XTX)-1XTY,求解权重向量。

 y=ex3y;theta = inv(x'*x)*x'*y;

求得θ向量为

  如果我想预计“1650-square-foot house with 3 bedrooms”的价格,那么由X * θ = Y可知:

price = [1,1650,3]* theta ;

  我们取消matlab中的科学计数法,看看price的价格是多少:

>> format long g
>> price

  price =  293081.464334897

  我们在给出的样本中,找一个接近的样本比比看:

  23号样本的房屋面积为1604,房间数也为3,它的价格为

  我们可以尝试画出H(θ)函数的图像看看:

  先分别用min和max函数找出房屋面积(x1)和房间个数(x2)的最大和最小值,有

  x1∈[852,4478]

  x2∈[1,5]

x1=linspace(852,4478,47);
x2=linspace(1,5,47);
[xx1,xx2]=meshgrid(x1,x2);
h_theta = theta(1)*ones(47,47) + theta(2)*xx1 + theta(3)*xx2;
surf(xx1,xx2,h_theta);

  可以看到H(θ)为如下平面:

   梯度下降需要预先确定学习速率、迭代次数,和数据规范化  Feature Scaling。

这篇关于正规化方程Normal Equations解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326922

相关文章

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三