本地部署推理TextDiffuser-2:释放语言模型用于文本渲染的力量

本文主要是介绍本地部署推理TextDiffuser-2:释放语言模型用于文本渲染的力量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录

文章目录

  • 系列文章目录
  • 一、模型下载和环境配置
  • 二、模型训练
    • (一)训练布局规划器
    • (二)训练扩散模型
  • 三、模型推理
    • (一)准备训练好的模型checkpoint
    • (二)全参数推理
    • (三)LoRA微调推理
  • 四、遇到的错误
    • (一)importerror,缺少某些库
    • (二)报错:libGL.so.1: cannot open shared object file: No such file or directory
    • (三)各种奇奇怪怪的错误(本质上是diffusers版本不对)
    • (四)各种库的版本不兼容
    • (五)RuntimeError: expected scalar type float Float bu found Half


一、模型下载和环境配置

  1. 将textdiffuser-2模型仓库克隆到本地
git clone https://github.com/microsoft/unilm/
cd unilm/textdiffuser-2
  1. 创建并激活虚拟环境,在textdiffuser-2目录下安装需要的软件包
conda create -n textdiffuser2 python=3.8
conda activate textdiffuser2
pip install -r requirements.txt
  1. 安装与系统版本和cuda版本相匹配的torch、torchvision、xformers (我的环境下cuda是12.2的,其他版本需要自己去官网查询)
    在这里插入图片描述
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple xformers
  1. 如果想用FastChat训练布局规划器,还需要安装flash-attention:

先将flash-attention模型仓库克隆下来

git clone https://github.com/Dao-AILab/flash-attention.git

然后安装对应的软件包

pip install packaging
pip uninstall -y ninja && pip install ninja
conda install -c nvidia cuda
pip install flash-attn --no-build-isolation
  1. 为了训练文本修复任务,还需要安装 differs 包
pip install https://github.com/JingyeChen/diffusers_td2.git

二、模型训练

(一)训练布局规划器

  1. 需要先下载lmsys/vicuna-7b-v1.5模型和FastChat模型。

模型下载方式: 采用git远程clone下来,具体方式可以参考之前的内容:huggingface学习 | 云服务器使用git-lfs下载huggingface上的模型文件;

  1. 进行训练
CUDA_VISIBLE_DEVICES=4,5 torchrun --nproc_per_node=2 --master_port=50008 FastChat-main/fastchat/train/train_mem.py \--model_name_or_path vicuna-7b-v1.5  \--data_path data/layout_planner_data_5k.json \--bf16 True \--output_dir experiment_result \--num_train_epochs 6 \--per_device_train_batch_size 2 \--per_device_eval_batch_size 2 \--gradient_accumulation_steps 16 \--evaluation_strategy "no" \--save_strategy "steps" \--save_steps 500 \--save_total_limit 5 \--learning_rate 2e-5 \--weight_decay 0. \--warmup_ratio 0.03 \--lr_scheduler_type "cosine" \--logging_steps 1 \--fsdp "full_shard auto_wrap" \--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \--tf32 True \--model_max_length 2048 \--gradient_checkpointing True \--lazy_preprocess True

(二)训练扩散模型

  1. 需要先准备需要训练的扩散模型:stable-diffusion-v1-5模型
  2. 对于全参数训练:
accelerate launch train_textdiffuser2_t2i_full.py \--pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \--train_batch_size=18 \--gradient_accumulation_steps=4 \--gradient_checkpointing \--mixed_precision="fp16" \--num_train_epochs=6 \--learning_rate=1e-5 \--max_grad_norm=1 \--lr_scheduler="constant" \--lr_warmup_steps=0 \--output_dir="diffusion_experiment_result" \--enable_xformers_memory_efficient_attention \--dataloader_num_workers=8 \--index_file_path='/path/to/train_dataset_index.txt' \--dataset_path='/path/to/laion-ocr-select/' \--granularity=128 \--coord_mode="ltrb" \--max_length=77 \--resume_from_checkpoint="latest"
  1. 对于 LoRA 训练:
accelerate launch train_textdiffuser2_t2i_lora.py \--pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \--train_batch_size=18 \--gradient_accumulation_steps=4 \--gradient_checkpointing \--mixed_precision="fp16" \--num_train_epochs=6 \--learning_rate=1e-4 \--text_encoder_learning_rate=1e-5 \--lr_scheduler="constant" \--output_dir="diffusion_experiment_result" \--enable_xformers_memory_efficient_attention \--dataloader_num_workers=8 \--index_file_path='/path/to/train_dataset_index.txt' \--dataset_path='/path/to/laion-ocr-select/' \--granularity=128 \--coord_mode="ltrb" \--max_length=77 \--resume_from_checkpoint="latest"

三、模型推理

(一)准备训练好的模型checkpoint

  1. 下载官网提供的模型checkpoint:layout planner、diffusion model (full parameter fine-tuning) 和diffusion model (lora fine-tuning)

  2. 准备stable-diffusion-v1-5模型

(二)全参数推理

CUDA_VISIBLE_DEVICES=4 accelerate launch inference_textdiffuser2_t2i_full.py \--pretrained_model_name_or_path="./stable-diffusion-v1-5" \--mixed_precision="fp16" \--output_dir="inference_results_1" \--enable_xformers_memory_efficient_attention \--resume_from_checkpoint="./textdiffuser2-full-ft" \--granularity=128 \--max_length=77 \--coord_mode="ltrb" \--cfg=7.5 \--sample_steps=20 \--seed=43555 \--m1_model_path="./textdiffuser2_layout_planner" \--input_format='prompt' \--input_prompt='a hotdog with mustard and other toppings on it'

推理结果:
在这里插入图片描述

(三)LoRA微调推理

CUDA_VISIBLE_DEVICES=4 accelerate launch inference_textdiffuser2_t2i_lora.py \--pretrained_model_name_or_path="./stable-diffusion-v1-5" \--gradient_accumulation_steps=4 \--gradient_checkpointing \--mixed_precision="fp16" \--output_dir="inference_results_2" \--enable_xformers_memory_efficient_attention \--resume_from_checkpoint="./textdiffuser2-lora-ft" \--granularity=128 \--coord_mode="ltrb" \--cfg=7.5 \--sample_steps=50 \--seed=43555 \--m1_model_path="./textdiffuser2_layout_planner" \--input_format='prompt' \--input_prompt='a stamp of u.s.a'

运行结果:
在这里插入图片描述

四、遇到的错误

(一)importerror,缺少某些库

在运行过程中出现了各种各样的importerror,于是就是缺少哪个库就下载那个库:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python
pip install protobuf

(二)报错:libGL.so.1: cannot open shared object file: No such file or directory

pip uninstall opencv-python
pip install opencv-python-headless

(三)各种奇奇怪怪的错误(本质上是diffusers版本不对)

  • RuntimeError: expected mat1 and mat2 to have the same dtype, but got: float != c10::Half
  • The deprecation tuple (‘LoRAXFormersAttnProcessor’, ‘0.26.0’, 'Make sure use XFormersAttnProcessor instead by settingLoRA layers to `self.
pip install diffusers==0.24.0 -i https://pypi.mirrors.ustc.edu.cn/simple/

(四)各种库的版本不兼容

由于作者在官网上提供了实验中使用的软件包列表可供参考,所以我直接将textdiffuser-2的assets文件夹下的refere_requirements.txt文件中的库一次性安装下来:

cd assets
pip install -r reference_requirements.txt -i https://pypi.mirrors.ustc.edu.cn/simple/

在这里插入图片描述

(五)RuntimeError: expected scalar type float Float bu found Half

这个错误是因为安装的diffusers包里有个文件需要用官网提供的新文件进行替换
可以先根据错误提示找到diffusers库包中attention_processor.py所在的位置,然后用assets文件夹下attention_processor.py进行替换即可解决问题。

在这里插入图片描述

参考:libGL.so.1: cannot open shared object file: No such file or directory

这篇关于本地部署推理TextDiffuser-2:释放语言模型用于文本渲染的力量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/786568

相关文章

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作