论文阅读:SDXL Improving Latent Diffusion Models for High-Resolution Image Synthesis

本文主要是介绍论文阅读:SDXL Improving Latent Diffusion Models for High-Resolution Image Synthesis,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SDXL Improving Latent Diffusion Models for High-Resolution Image Synthesis

论文链接
代码链接

介绍

  • 背景:Stable Diffusion在合成高分辨率图片方面表现出色,但是仍然需要提高
  • 本文提出了SD XL,使用了更大的UNet网络,以及增加了一个Refinement Model,以进一步提高图片质量。

提高SD的措施

  • 用户偏好调查比较
    Comparing user preferences between SDXL and Stable Diffusion 1.5 & 2.1
    可以看到,在不增加Refiner模型的情况下,SD XL的效果已经比SD 1.5和2.1好很多了。
  • SD XL的模型结构
    Visualization of the two-stage pipeline
    可以看到,SD XL由一个SD base模型和一个Refiner模型组成,二者共用一个提示词输入,前者的输出同时也是后者的输入。Refiner模型其实是一个图片编辑模型。
  1. Architecture & Scale

    Comparison of SDXL and older Stable Diffusion models

    • transformer block方面,忽略高层级的块,而使用低层级的2和10特征块(不懂)
    • 使用两个Text Encoder并将它们的输出特征拼接到一起
    • 额外使用了Pooled text emb作为条件输入(不懂)
  2. Micro-Conditioning

    • Conditioning the Model on Image Size:过去的方法要么选择忽略小于特定尺寸的图片,要么选择放缩图片,前者忽略了大量的图片,后者可能造成图片模糊。SD XL中,将图片尺寸也当做条件输入,这样在推理阶段,用户就可以指定生成图片的尺寸,如图5所示。
      The effects of varying the size-conditioning

    • Conditioning the Model on Cropping Parameters

      由于SD 1和2系列使用了图片裁剪的方式进行数据增强,导致了生成的图片中有些物体只展现了一部分,如图4所示。SD XL通过将左上方 的裁剪坐标当做条件输入,让模型学到了裁剪坐标的信息。在推理的过程中,将裁剪坐标条件输入设置为(0,0)即可输出物体在图片中间的图片。
      Comparison of the output of SDXL with previous versions of Stable Diffusion
      Varying the crop conditioning as discussed in Sec. 2.2.

  3. Multi-Aspect Training
    常见情况下SD模型的输出是一个方形的图片,但是在实际应用中,图片的尺寸比例会有不同的要求。为了适应这一需求,SD XL将训练图片按照长宽比划分为不同的数据桶。在训练过程中,每个batch中的图片都来自同一个桶,每个训练步数中的数据在不同桶中之间交替选择。此外,桶的中数据的尺寸也被作为条件输入。

  4. Improved Autoencoder
    SD XL重新训练了一个更大的autoencoder,可以提高生成图片的局部高频细节。从表3中可以看到,使用提升后的autoencoder后,SD XL的重构性能在多个方面都比SD 1和2有所提高。
    Autoencoder reconstruction performance onthe COCO2017

  5. Putting Everything Together
    最终的SD XL是使用前面的所有策略共同训练得到的。
    Refinement Stage:使用上述方法训练的模型有些时候仍然会生成低质量的图片,因此为了提高生成高分辨率的图片的能力,SD XL使用图片编辑技术,添加了一个Refiner模型,这个模型是可选的。

未来的工作

作者认为未来还值得研究方向如下:

  • 单阶段:SD XL是一个两阶段的模型,时间和空间开销更大。研究一个同样效果或更好效果的单阶段模型很有必要。
  • 文本合成:SD XL中采用了更多和更大的text encoder,也取得了更好的效果。使用byte-level tokenizers [52, 27]或者只是使用更大规模的文本编码器是提高SD XL文本处理能力的可能途径。
  • 结构:作者们尝试过一些Transformer-based的模型,比如UViT [16] and DiT [33],但是没有发现好的效果。然而,作者们仍然认为,Transformer为主的模型是一个方向。(新的Stable Diffusion 3正是采用了DiT [33]的技术,说明作者们坚持的优化方向是正确的)
  • 蒸馏:使用模型蒸馏技术,减小模型的体积,减少空间和时间开销。事实上,SD系列一直有蒸馏版本的模型,比如SD XL Turbo。
  • SD XL是在离散时间模式下训练的,需要偏移噪声预测以生成美观的图片。EDM-framework是一个很有潜力的工作,其支持连续时间,可以提高采样灵活性而不需要噪音校对。(不是很懂)

其它

  • 重要的相关工作
    • 图片编辑模型:SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations

这篇关于论文阅读:SDXL Improving Latent Diffusion Models for High-Resolution Image Synthesis的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782583

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

lvgl8.3.6 控件垂直布局 label控件在image控件的下方显示

在使用 LVGL 8.3.6 创建一个垂直布局,其中 label 控件位于 image 控件下方,你可以使用 lv_obj_set_flex_flow 来设置布局为垂直,并确保 label 控件在 image 控件后添加。这里是如何步骤性地实现它的一个基本示例: 创建父容器:首先创建一个容器对象,该对象将作为布局的基础。设置容器为垂直布局:使用 lv_obj_set_flex_flow 设置容器

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需