diffusion model 整理 DDPM: 前向一步到位,从数据集里的图片加噪声,根据随机到的 t t t 决定混合的比例,反向要慢慢迭代,DDPM是用了1000步迭代。模型的输入是带噪声图和 t,t 先生成embedding后,用通道和的方式加到每一层中间去: 训练过程是对每个样本分配一个随机的t,采样一个高斯噪声 ϵ \epsilon ϵ,然后根据 t 对图片和噪声进行混合,将加噪
DDPM 前向阶段 重复 2-5 步骤 x 0 ∼ q ( x 0 ) \mathbf{x}_0\sim q(\mathbf{x}_0) x0∼q(x0)从数据集中采样一张图片 t ∼ U n i f o r m ( { 1 , … , T } ) t\sim\mathrm{Uniform}(\{1,\ldots,T\}) t∼Uniform({1,…,T}),从 1~T 中随机挑选一