VideoCrafter1:Open Diffusion models for high-quality video generation

2024-09-03 19:52

本文主要是介绍VideoCrafter1:Open Diffusion models for high-quality video generation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://zhuanlan.zhihu.com/p/677918122icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/677918122

视频生成无论是文生视频,还是图生视频,图生视频这块普遍的操作还是将图片作为一个模态crossattention进unet进行去噪,这一步是需要训练的,svd除此之外,还将图片和noise做拼接,这一步,很多文生视频的方式通过通过这一步来扩展其成为图生视频&#x

这篇关于VideoCrafter1:Open Diffusion models for high-quality video generation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133887

相关文章

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

Apple quietly slips WebRTC audio, video into Safari's WebKit spec

转自:http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-into-safaris-webkit-spec/?from=timeline&isappinstalled=0 http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-

Open a folder or workspace... (File -> Open Folder)

问题:vscode Open with Live Server 时 显示Open a folder or workspace... (File -> Open Folder)报错 解决:不可以单独打开文件1.html ; 需要在文件夹里打开 像这样

android java.io.IOException: open failed: ENOENT (No such file or directory)-api23+权限受权

问题描述 在安卓上,清单明明已经受权了读写文件权限,但偏偏就是创建不了目录和文件 调用mkdirs()总是返回false. <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/><uses-permission android:name="android.permission.READ_E

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

LLVM入门2:如何基于自己的代码生成IR-LLVM IR code generation实例介绍

概述 本节将通过一个简单的例子来介绍如何生成llvm IR,以Kaleidoscope IR中的例子为例,我们基于LLVM接口构建一个简单的编译器,实现简单的语句解析并转化为LLVM IR,生成对应的LLVM IR部分,代码如下,文件名为toy.cpp,先给出代码,后面会详细介绍每一步分代码: #include "llvm/ADT/APFloat.h"#include "llvm/ADT/S

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

Python安装llama库出错“metadata-generation-failed”

Python安装llama库出错“metadata-generation-failed” 1. 安装llama库时出错2. 定位问题1. 去官网下载llama包 2.修改配置文件2.1 解压文件2.2 修改配置文件 3. 本地安装文件 1. 安装llama库时出错 2. 定位问题 根据查到的资料,发现时llama包中的execfile函数已经被下线了,需要我们手动修改代码后

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探