利用Streamlit前端框架开发Stable Diffusion模型图像生成网页应用(下篇)

本文主要是介绍利用Streamlit前端框架开发Stable Diffusion模型图像生成网页应用(下篇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天介绍亚马逊云科技推出的国际前沿人工智能模型平台Amazon Bedrock上的Stability Diffusion模型开发生成式AI图像生成应用!本系列共有3篇,在上篇中我们学习了如何在亚马逊云科技控制台上体验该模型的每个特色功能,如文生图、图生图、图像修复等。中篇我们介绍了如何通过API代码实现以上功能。

接下来在下篇中我将带大家沉浸式实操,通过Stability Difussion模型API和Streamlit网页前端框架,沉浸式开发一个属于自己的图片生成式AI应用。大家可以通过本博客中的实操项目自己学习AI技能,并应用到日常工作中。

方案所需基础知识 

什么是Amazon Bedrock

Amazon Bedrock 是一项完全托管的服务,通过统一的 API 提供来自 AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI 和 Amazon 等领先 AI 公司的高性能基础模型(FMs),同时提供广泛的功能,让开发者能够在确保安全、隐私和负责任 AI 的前提下构建生成式 AI 应用。使用 Amazon Bedrock,开发者们可以:

轻松地测试、评估开发者的用例在不同基础模型下的表现;

  1. 使用微调和检索增强生成(RAG)等技术定制化开发应用程序;
  2. 构建可以使用开发者的企业系统和数据源自动执行任务的智能 Agents。
  3. 由于 Amazon Bedrock 是 Serverless 的服务,开发者无需管理任何基础设施,并且可以使用开发者已经熟悉其它的亚马逊云科技服务安全地集成和部署生成式 AI 功能到开发者的应用中。

什么是 Stability AI 模型? 

Stability AI 是一家致力于开发和提供生成式人工智能模型的公司,其模型被广泛应用于图像生成领域。Stability AI 的模型中最著名的莫非是 Stable Diffusion 生成模型,能够根据用户输入的描述,自动生成高度逼真的图像和文本。这些模型以其卓越的生成能力和灵活性,在应用开发中管饭应用和认可。

本实践包括的内容 

1. 学习Streamlit前端框架以及常用API、服务器启动命令等

2. 利用Streamlit前端框架和Stability Diffusion AI模型开发生成式AI图像生成网页应用。

功能实践具体步骤

模型参数

我们可以在访问Stability Diffusion API时配置如下参数,调整图片生成提示词、风格等配置生成多样化图片:

参数解释
height生成图像的高度
width生成图像的宽度
text_prompts数组形式的文本提示
cfg_scale控制扩散过程对提示文本的遵循程度
clip_guidance_preset采样的预设模式
sampler用于选择扩散过程使用的算法
seed随机噪声种子
steps扩散过程的运行次数
style_preset引导图像模型走向特定风格的预设
extras传递给引擎的其他实验性功能

接下来我们定义在我们的图像生成网页开发过程中会用到的Stable Diffusion模型参数:

DEBUG = os.getenv("DEBUG", False)
DEFAULT_SEED = os.getenv("DEFAULT_SEED", 12345)
MAX_SEED = 4294967295
MODEL_ID = "stability.stable-diffusion-xl-v1"
NEGATIVE_PROMPTS = ["bad anatomy", "distorted", "blurry","pixelated", "dull", "unclear","poorly rendered","poorly Rendered face","poorly drawn face","poor facial details","poorly drawn hands","poorly rendered hands","low resolution","Images cut out at the top, left, right, bottom.","bad composition","mutated body parts","blurry image","disfigured","oversaturated","bad anatomy","deformed body features",
]
STYLES_MAP = {"电影感(Cinematic)": "cinematic","摄影(Photographic)": "photographic","漫画(Comic Book)": "comic-book","折纸(Origami)": "origami","模拟胶片(Analog Film)": "analog-film","幻想艺术(Fantasy Art)": "fantasy-art","线条艺术(Line Art)": "line-art","霓虹朋克粉(Neon Punk)": "neon-punk","三维模型(3D Model)": "3d-model","数码艺术(Digital Art)": "digital-art","增强(Enhance)": "enhance","像素艺术(Pixel Art)": "pixel-art","瓷砖纹理(Tile Texture)": "tile-texture","无(None)": "None",
}

 图片生成API调用函数代码段

1.编写调用 API 的等函数

bedrock_runtime = boto3.client('bedrock-runtime')@st.cache_data(show_spinner=False)
def gen_img_from_bedrock(prompt, style, seed=DEFAULT_SEED,width=512,height=512):body = json.dumps({"text_prompts": [{"text": prompt}],"cfg_scale": 10,"seed": seed,"steps": 50,"style_preset": style,"negative_prompts": NEGATIVE_PROMPTS,"width":width,"height":height})accept = "application/json"contentType = "application/json"response = bedrock_runtime.invoke_model(body=body, modelId=MODEL_ID, accept=accept, contentType=contentType)response_body = json.loads(response.get("body").read())image_bytes = response_body.get("artifacts")[0].get("base64")image_data = base64.b64decode(image_bytes.encode())st.session_state['image_data'] = image_datareturn image_data

其他Streamlit应用相关函数,主要用于管理用户界面组件(滑块、图片上传等)

def update_slider():st.session_state.slider = st.session_state.numericdef update_numin():st.session_state.numeric = st.session_state.slider@st.cache_data
def get_image(image_data):return Image.open(io.BytesIO(image_data))

 2. 主函数界面部分

if __name__ == '__main__':# Create the page titlest.set_page_config(page_title='Amazon Bedrock Stable Diffusion', page_icon='./bedrock.png')st.title('Stable Diffusion Image Generator with Amazon Bedrock')# Create a sidebar with text exampleswith st.sidebar:# Selectboxstyle_key = st.sidebar.selectbox("Choose image style",STYLES_MAP.keys(),index=0)seed_input = st.sidebar.number_input("Seed", value=DEFAULT_SEED, placeholder=DEFAULT_SEED, key="numeric", on_change=update_slider)seed_slider = st.sidebar.slider('Seed Slider', min_value=0, value=seed_input, max_value=MAX_SEED, step=1, key="slider",on_change=update_numin, label_visibility="hidden")seed = seed_input | seed_slider# 图片宽度width = st.sidebar.slider('Width', min_value=256, value=512, max_value=1024, step=64, key="width_slider")# 图片高度height = st.sidebar.slider('Height', min_value=256, value=512, max_value=1024, step=64, key="height_slider")

3.主函数调用Stable Diffusion API 部分 

    prompt = st.text_input('Input your prompt')if not prompt:st.warning("Please input a prompt")# Block the image generation if there is no input promptst.stop()if st.button("Generate", type="primary"):if len(prompt) > 0:st.markdown(f"""This will show an image using **Stable Diffusion** with your desired prompt entered : {prompt}""")# Create a spinner to show the image is being generatedwith st.spinner('Generating image based on prompt'):if not DEBUG:style = STYLES_MAP[style_key]print("Generate image with Style:{} with Seed:{} and Width:{} and Height:{} and Prompt: {}".format(style_key, seed, width , height  , prompt))# Send request to Bedrockimage_data = gen_img_from_bedrock(prompt=prompt, style=style, seed=seed,width=width,height=height)st.success('Generated stable diffusion image')if st.session_state.get("image_data", None):image = get_image(st.session_state.image_data)st.image(image)if DEBUG:st.write(st.session_state)

4. 启动streamlit服务器,加载网页应用

streamlit run intro_streaming.py --server.port 8080 

网页应用预览

5. 打开运行命令返回的"External URL"就可以进入到我们开发的网页应用前端了

6. 若想关停streamlit前端应用,在键盘点击Ctrl+C

以上就是沉浸式使用Amazon Bedrock上的Stability AI模型开发图像生成AI网页应用的下篇内容。欢迎大家关注小李哥的亚马逊云科技AI服务深入调研系列,未来获取更多国际前沿的AWS云开发/云架构方案。 

这篇关于利用Streamlit前端框架开发Stable Diffusion模型图像生成网页应用(下篇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127406

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram