DynamiCrafter:Animating open-domain images with video diffusion priors

2024-08-30 16:20

本文主要是介绍DynamiCrafter:Animating open-domain images with video diffusion priors,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.Method

图像条件视频生成,

1.1 Image Dynamics from Video Diffusion Priors

1.1.1 文本对齐的上下文表征

文本嵌入通过clip构建,图像通过clip编码,主要代表语义层面的视觉内容,未能捕获图像的完整信息,为了提取更完整的信息,使用来自clip图像vit最后一层的全视觉标记,该token在条件图像生成时表现出了高保真度,为了促进与文本嵌入的对齐,即为了获得可以被去噪unet解释的上下文表征,利用一个轻量级网络P将视觉token转换为上下文表征,采用了多模态融合的Q-former架构。随后文本嵌入和上下文嵌入通过双cross attention与unet中间特征交互

这篇关于DynamiCrafter:Animating open-domain images with video diffusion priors的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121320

相关文章

Apple quietly slips WebRTC audio, video into Safari's WebKit spec

转自:http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-into-safaris-webkit-spec/?from=timeline&isappinstalled=0 http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-

Open a folder or workspace... (File -> Open Folder)

问题:vscode Open with Live Server 时 显示Open a folder or workspace... (File -> Open Folder)报错 解决:不可以单独打开文件1.html ; 需要在文件夹里打开 像这样

android java.io.IOException: open failed: ENOENT (No such file or directory)-api23+权限受权

问题描述 在安卓上,清单明明已经受权了读写文件权限,但偏偏就是创建不了目录和文件 调用mkdirs()总是返回false. <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/><uses-permission android:name="android.permission.READ_E

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探

使用亚马逊Bedrock的Stable Diffusion XL模型实现文本到图像生成:探索AI的无限创意

引言 什么是Amazon Bedrock? Amazon Bedrock是亚马逊云服务(AWS)推出的一项旗舰服务,旨在推动生成式人工智能(AI)在各行业的广泛应用。它的核心功能是提供由顶尖AI公司(如AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI以及亚马逊自身)开发的多种基础模型(Foundation Models,简称FMs)。

Open-Sora代码详细解读(1):解读DiT结构

Diffusion Models专栏文章汇总:入门与实战 前言:目前开源的DiT视频生成模型不是很多,Open-Sora是开发者生态最好的一个,涵盖了DiT、时空DiT、3D VAE、Rectified Flow、因果卷积等Diffusion视频生成的经典知识点。本篇博客从Open-Sora的代码出发,深入解读背后的原理。 目录 DiT相比于Unet的关键改进点 Token化方

Differential Diffusion,赋予每个像素它应有的力量,以及在comfyui中的测试效果

🥽原论文要点 首先是原论文地址:https://differential-diffusion.github.io/paper.pdf 其次是git介绍地址:GitHub - exx8/differential-diffusion 感兴趣的朋友们可以自行阅读。 首先,论文开篇就给了一个例子: 我们的方法根据给定的图片和文本提示,以不同的程度改变图像的不同区域。这种可控性允许我们再现

HumanNeRF:Free-viewpoint Rendering of Moving People from Monocular Video 翻译

HumanNeRF:单目视频中运动人物的自由视点绘制 引言。我们介绍了一种自由视点渲染方法- HumanNeRF -它适用于一个给定的单眼视频ofa人类执行复杂的身体运动,例如,从YouTube的视频。我们的方法可以在任何帧暂停视频,并从任意新的摄像机视点或甚至针对该特定帧和身体姿势的完整360度摄像机路径渲染主体。这项任务特别具有挑战性,因为它需要合成身体的照片级真实感细节,如从输入视频中可能

error while loading shared libraries: libnuma.so.1: cannot open shared object file:

腾讯云CentOS,安装Mysql时: 1.yum remove libnuma.so.1 2.yum install numactl.x86_64