一文读懂「RAG,Retrieval-Augmented Generation」检索增强生成

本文主要是介绍一文读懂「RAG,Retrieval-Augmented Generation」检索增强生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

Retrieval-Augmented Generation(RAG)作为机器学习和自然语言处理领域的一大创新,不仅代表了技术的进步,更在实际应用中展示了其惊人的潜力。

在这里插入图片描述

RAG结合了检索(Retrieval)和生成(Generation)两大核心技术,通过这种独特的混合机制,能够在处理复杂的查询和生成任务时,提供更加准确、丰富的信息。无论是在回答复杂的问题,还是在创作引人入胜的故事,RAG都展现了其不可小觑的能力。

一 、什么是RAG?

检索增强生成(Retrieval Augmented Generation),简称 RAG,已经成为当前最火热的LLM应用方案。它是一个为大模型提供外部知识源的概念,这使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。
在这里插入图片描述
但是大模型应用于实际业务场景时会发现,通用的基础大模型基本无法满足我们的实际业务需求,主要有以下几方面原因:

  • 知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是构建于网络公开的数据,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。
  • 幻觉问题:所有的AI模型的底层原理都是基于数学概率,其模型输出实质上是一系列数值运算,大模型也不例外,所以它有时候会一本正经地胡说八道,尤其是在大模型自身不具备某一方面的知识或不擅长的场景。而这种幻觉问题的区分是比较困难的,因为它要求使用者自身具备相应领域的知识。
    数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。这也导致完全依赖通用大模型自身能力的应用方案不得不在数据安全和效果方面进行取舍。
    而RAG是解决上述问题的一套有效方案。
    在这里插入图片描述

二、RAG结构

简单来讲,RAG就是通过检索获取相关的知识并将其融入Prompt,让大模型能够参考相应的知识从而给出合理回答。因此,可以将RAG的核心理解为“检索+生成”,前者主要是利用向量数据库的高效存储和检索能力,召回目标知识;后者则是利用大模型和Prompt工程,将召回的知识合理利用,生成目标答案。
在这里插入图片描述
完整的RAG应用流程主要包含两个阶段:
在这里插入图片描述

  • 数据准备阶段:数据提取 >> 文本分割 >> 向量化(embedding) >> 数据入库
  • 应用阶段:用户提问 >> 数据检索(召回) >> 注入Prompt >> LLM生成答案

2.1 数据准备阶段

数据准备一般是一个离线的过程,主要是将私域数据向量化后构建索引并存入数据库的过程。主要包括:数据提取、文本分割、向量化、数据入库等环节。

数据提取

  • 数据加载:包括多格式数据加载、不同数据源获取等,根据数据自身情况,将数据处理为同一个范式。

  • 数据处理:包括数据过滤、压缩、格式化等。

  • 元数据获取:提取数据中关键信息,例如文件名、Title、时间等 。

文本分割

文本分割主要考虑两个因素:

  • 1)embedding模型的Tokens限制情况;
  • 2)语义完整性对整体的检索效果的影响。

一些常见的文本分割方式如下:

  • 句分割:以”句”的粒度进行切分,保留一个句子的完整语义。常见切分符包括:句号、感叹号、问号、换行符等。

  • 固定长度分割:根据embedding模型的token长度限制,将文本分割为固定长度(例如256/512个tokens),这种切分方式会损失很多语义信息,一般通过在头尾增加一定冗余量来缓解。

向量化(embedding)

向量化是一个将文本数据转化为向量矩阵的过程,该过程会直接影响到后续检索的效果。目前常见的embedding模型如表中所示,这些embedding模型基本能满足大部分需求,但对于特殊场景(例如涉及一些罕见专有词或字等)或者想进一步优化效果,则可以选择开源Embedding模型微调或直接训练适合自己场景的Embedding模型。
在这里插入图片描述
数据入库

数据向量化后构建索引,并写入数据库的过程可以概述为数据入库过程,适用于RAG场景的数据库包括:FAISS、Chromadb、ES、milvus等。一般可以根据业务场景、硬件、性能需求等多因素综合考虑,选择合适的数据库。

2.2 应用阶段

在应用阶段,我们根据用户的提问,通过高效的检索方法,召回与提问最相关的知识,并融入Prompt,大模型参考当前提问和相关知识,生成相应的答案。关键环节包括:数据检索、注入Prompt等。

数据检索

常见的数据检索方法包括:相似性检索、全文检索等,根据检索效果,一般可以选择多种检索方式融合,提升召回率。

  • 相似性检索:即计算查询向量与所有存储向量的相似性得分,返回得分高的记录。常见的相似性计算方法包括:余弦相似性、欧氏距离、曼哈顿距离等。

  • 全文检索:全文检索是一种比较经典的检索方式,在数据存入时,通过关键词构建倒排索引;在检索时,通过关键词进行全文检索,找到对应的记录。

注入Prompt

Prompt作为大模型的直接输入,是影响模型输出准确率的关键因素之一。在RAG场景中,Prompt一般包括任务描述、背景知识(检索得到)、任务指令(一般是用户提问)等,根据任务场景和大模型性能,也可以在Prompt中适当加入其他指令优化大模型的输出。一个简单知识问答场景的Prompt如下所示:

【任务描述】 假如你是一个专业的客服机器人,请参考【背景知识】,回 【背景知识】 {content} // 数据检索得到的相关文本 【问题】
石头扫地机器人P10的续航时间是多久?

Prompt的设计只有方法、没有语法,比较依赖于个人经验,在实际应用过程中,往往需要根据大模型的实际输出进行针对

这篇关于一文读懂「RAG,Retrieval-Augmented Generation」检索增强生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/779586

相关文章

android 带与不带logo的二维码生成

该代码基于ZXing项目,这个网上能下载得到。 定义的控件以及属性: public static final int SCAN_CODE = 1;private ImageView iv;private EditText et;private Button qr_btn,add_logo;private Bitmap logo,bitmap,bmp; //logo图标private st

FastAdmin/bootstrapTable 表格中生成的按钮设置成文字

公司有个系统后台框架用的是FastAdmin,后台表格的操作栏按钮只有图标,想要设置成文字。 查资料后发现其实很简单,主需要新增“text”属性即可,如下 buttons: [{name: 'acceptcompany',title: '复核企业',text:'复核企业',classname: 'btn btn-xs btn-primary btn-dialog',icon: 'fa fa-pe

PHP生成csv格式Excel,秒级别实现excel导出功能

防止报超内存,兼容中文,兼容科学技术法。 爽。。。。很爽。。。。 /*** 告诉浏览器下载csv文件* @param string $filename*/public static function downloadCsv($data, $filename, $encoding = 'utf-8'){header("Content-type: text/csv");header("Conten

PHP 读取或生成大的Excel

场景,在很多情况下,需要读取Excel文件。 常用的有PHPExcel包或者使用 maatwebsite/excel 包 但是使用这个包读取或生成excel,如果excel文件过大,很容易出现超内存情况。 解决方法: 上传:要求上传者使用.csv 文件上传。然后使用php自带的 fgetcsv()函数来读取文件。http://php.net/manual/zh/function.fgetc

3D模型相关生成

3D模型相关生成 1. DreamFusion Model DreamFusion Model 是一种将文本描述转化为三维模型的技术。你可以想象它是一个“魔法翻译器”,你告诉它一个场景或物体的描述,比如“一个飞翔的龙”,它就能生成一个相应的 3D 模型。 原理: 文本到图像生成:DreamFusion 首先将文本描述转化为一系列可能的 2D 图像。这部分利用了预训练的扩散模型(如 DALL

Java代理-动态字节码生成代理的5种方式

上篇讲到了代理模式出现的原因,实现方式以及跟其他相似设计模式的区别。传送门@_@ http://blog.csdn.net/wonking666/article/details/79497547 1.静态代理的不足 设计模式里面的代理模式,代理类是需要手动去写的。但是手写代理的问题颇多 1.如果不同类型的目标对象需要执行同样一套代理的逻辑,比如说在方法调用前后打印参数和结果,那么仍然需要为每

Retrieval-Augmented Generation for Large Language Models A Survey

Retrieval-Augmented Generation for Large Language Models: A Survey 文献综述 文章目录 Retrieval-Augmented Generation for Large Language Models: A Survey 文献综述 Abstract背景介绍 RAG概述原始RAG先进RAG预检索过程后检索过程 模块化RAGMo

几何内核开发-实现自己的NURBS曲线生成API

我去年有一篇帖子,介绍了NURBS曲线生成与显示的实现代码。 https://blog.csdn.net/stonewu/article/details/133387469?spm=1001.2014.3001.5501文章浏览阅读323次,点赞4次,收藏2次。搞3D几何内核算法研究,必须学习NURBS样条曲线曲面。看《非均匀有理B样条 第2版》这本书,学习起来,事半功倍。在《插件化算法研究平台

LSSS算法实现,基于eigen和pbc密码库【一文搞懂LSSS,原理+代码】

文章目录 一. LSSS简介1.1 概述1.2 线性秘密分享方案(LSSS)与 Shamir的秘密分享方案对比LSSS1.2.1 Shamir的秘密分享方案1.2.2 线性秘密分享方案(LSSS)1.2.3 主要区别 二. 基于矩阵的LSSS加解密原理分析2.1 LSSS矩阵构造2.1.1 定义2.1.2 规则 12.1.3 规则 22.1.4 规则 32.1.5 形成线性共享矩阵M 2.

基于RAG的知识库AI代理机器人,问题思考

基于RAG的知识库AI代理机器人,问题思考 知识库内容分类 对于普通非qa问答格式的知识内容 在分段存储时,需要手动调整,保证每个分段的内容意思完整,不被分割,当然段落也不宜过长,保证内容表达的意思到不可分割为止就行 对于qa问答格式的知识内容 通常需要对问题增加格外索引,因为fastgpt的模式是将问题和回答,作为完整的文本作为向量化的坐标,当问题和回答的内容过长时,使用问题向量化匹配