Jetson Nano 【14】Pytorch的YOLOv3 spp 模型中关于tensorRT+ 矩形推理问题的解决过程

本文主要是介绍Jetson Nano 【14】Pytorch的YOLOv3 spp 模型中关于tensorRT+ 矩形推理问题的解决过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 背景说明
        • 最终效果
        • 实现过程
          • 矩形推理在整体流程中的位置
          • 图形数据输入处理
          • 推理输出接收
        • 总结
        • git地址

背景说明
  • 模型是YOLOv3 spp
  • 框架是Pytorch
  • 由于我的Nano上GPU计算资源不够,所以我们急需减少模型计算量,在剪枝与量化+转tensorRT后从500ms达到了85ms每张,但依然达不到要求,于是想到了矩形推理。
最终效果
  • 在256x416的视频中实现50-55ms 处理一张图片的成绩,换算成FPS 在 20左右(YOLOv3 Spp)。
实现过程
矩形推理在整体流程中的位置
  • 如图
    在这里插入图片描述
图形数据输入处理
  • 可以参考https://github.com/ultralytics/yolov3/issues/232,中的讨论内容
  • 基本原理就是,图形等比缩放,短边朝着最近的32倍数补充(YOLOv3特征图有个较大的是32x32的)于是,关键代码是:dw, dh = np.mod(dw, 32), np.mod(dh, 32)
# 图片变形
def letterbox(img, new_shape=(416, 416), color=(0, 0, 0),auto=True, scaleFill=False, scaleup=True, interp=cv2.INTER_AREA):# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232shape = img.shape[:2]  # current shape [height, width]      (1920,1080,3)if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = max(new_shape) / max(shape)# 计算缩放比例if not scaleup:  # only scale down, do not scale up (for better test mAP)r = min(r, 1.0)# Compute paddingratio = r, r  # width, height ratios  等比缩小new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingif auto:  # minimum rectangledw, dh = np.mod(dw, 32), np.mod(dh, 32)  # wh padding  模计算pass# 造成长宽不同的原因在于此elif scaleFill:  # stretchdw, dh = 0.0, 0.0new_unpad = new_shaperatio = new_shape[0] / shape[1], new_shape[1] / shape[0]  # width, height ratiosdw /= 2  # divide padding into 2 sides # 填充分两边dh /= 2if shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=interp)  # INTER_AREA is better, INTER_LINEAR is fastertop, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border   添加边框return img, ratio, (dw, dh)
推理输出接收
  • 由于输入是矩形的,则输出应当也是矩形(这里考虑TensorRT没问题的情况,不匹配请重新转化一遍),则需要在原来的基础上添加判断形状的代码

  • 我在init中吧grid_分成x和y,用以代表矩形的两边

 # self.grid_size = 0  # grid size  分成 grid_size_x grid_size_y,用于矩形推理的实现self.grid_size_x = 0  self.grid_size_y = 0  
  • 在进行前推forward的时候,我们需要对接收的数据进行形状判断:
  • 这里就第一层为例,下采样32x32,则当输入为256x416时,,那么h = 256/32 = 8 ; w = 416/32 = 13,即当batchsize=1的时候,x的形状是:[1,3,8,13],如此依赖我们就获取了高和宽数据(实际上是网格数量)
 # 检测框具体顺序为 Center x,Center y,Width,Height# x的说明:若图片输入非正方形 如:256x416# x[2],x[3] =  256/32 = 8 , 416/32 = 13 下一层以此类推 
grid_size_y = x.size(2)
grid_size_x = x.size(3)
  • 在后续构造tensor形状的时候起作用,如:
# 注释说明
# prediction 的维度为 batch_size, num_anchors=3, grid_size, grid_size, num_classes + 5(coco:85)
prediction = (x.view(num_samples, self.num_anchors, self.num_classes + 5, grid_size_y, grid_size_x).permute(0, 1, 3, 4, 2)  # permute: 将维度换位.contiguous())
  • 还有个比较重要的点是:compute_grid_offsets方法,它是计算网格偏移的,用于抵消图像变化所带来的框体偏移
def compute_grid_offsets(self, grid_size_y,grid_size_x, img_dim, cuda=True, Half=False):# self.grid_size = grid_size# [x,y] 由于x y 可能不同,则所有有关x、y都需要分开self.grid_size_x = grid_size_xself.grid_size_y = grid_size_ygx = self.grid_size_xgy = self.grid_size_yFloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensorFloatTensor = torch.cuda.HalfTensor if Half else torch.cuda.FloatTensorself.img_dim = img_dim# 步长一定要是正方形self.stride = self.img_dim / max(gx, gy)# Calculate offsets for each grid# self.grid_x = torch.arange(gx).repeat(gy, 1).view([1, 1, gy, gx]).type(FloatTensor)self.grid_x = torch.arange(gx).repeat(gy, 1).view([1, 1, gy, gx]).type(FloatTensor)# self.grid_y = torch.arange(gx).repeat(gy, 1).view([1, 1, gy, gx]).type(FloatTensor)# self.grid_y = torch.arange(gx).repeat(gy, 1).t().contiguous().view([1, 1, gy, gx]).type(FloatTensor)# 这里的grid y 需要与gridx 的顺序不同self.grid_y = torch.arange(gy).repeat(gx, 1).t().contiguous().view([1, 1, gy, gx]).type(FloatTensor)self.scaled_anchors = FloatTensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors])# self.scaled_anchors = FloatTensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors])self.anchor_w = self.scaled_anchors[:, 0].view((1, self.num_anchors, 1, 1))self.anchor_h = self.scaled_anchors[:, 1].view((1, self.num_anchors, 1, 1))
  • 它需要计算grid_x和grid_y,此时需要将形状准确地填入,如在计算grid_y的时候,涉及到矩阵转置,如果非方阵,则涉及到长宽问题就比较重要,需要与grid_x的计算方法,相反:self.grid_y = torch.arange(gy).repeat(gx, 1).t().contiguous().view([1, 1, gy, gx]).type(FloatTensor)
总结
  • 总体原理比较简单,但是加速效果简单粗暴,真的明显,比如原来416x416编程256x416那个加速比,简单算算应该至少有三分之一吧,实际上接近40%,更加明显一点。
git地址
  • 更新更新:觉得不错的话,给小弟一个Star吧

这篇关于Jetson Nano 【14】Pytorch的YOLOv3 spp 模型中关于tensorRT+ 矩形推理问题的解决过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/777465

相关文章

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示