Jetson Nano 【14】Pytorch的YOLOv3 spp 模型中关于tensorRT+ 矩形推理问题的解决过程

本文主要是介绍Jetson Nano 【14】Pytorch的YOLOv3 spp 模型中关于tensorRT+ 矩形推理问题的解决过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 背景说明
        • 最终效果
        • 实现过程
          • 矩形推理在整体流程中的位置
          • 图形数据输入处理
          • 推理输出接收
        • 总结
        • git地址

背景说明
  • 模型是YOLOv3 spp
  • 框架是Pytorch
  • 由于我的Nano上GPU计算资源不够,所以我们急需减少模型计算量,在剪枝与量化+转tensorRT后从500ms达到了85ms每张,但依然达不到要求,于是想到了矩形推理。
最终效果
  • 在256x416的视频中实现50-55ms 处理一张图片的成绩,换算成FPS 在 20左右(YOLOv3 Spp)。
实现过程
矩形推理在整体流程中的位置
  • 如图
    在这里插入图片描述
图形数据输入处理
  • 可以参考https://github.com/ultralytics/yolov3/issues/232,中的讨论内容
  • 基本原理就是,图形等比缩放,短边朝着最近的32倍数补充(YOLOv3特征图有个较大的是32x32的)于是,关键代码是:dw, dh = np.mod(dw, 32), np.mod(dh, 32)
# 图片变形
def letterbox(img, new_shape=(416, 416), color=(0, 0, 0),auto=True, scaleFill=False, scaleup=True, interp=cv2.INTER_AREA):# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232shape = img.shape[:2]  # current shape [height, width]      (1920,1080,3)if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = max(new_shape) / max(shape)# 计算缩放比例if not scaleup:  # only scale down, do not scale up (for better test mAP)r = min(r, 1.0)# Compute paddingratio = r, r  # width, height ratios  等比缩小new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingif auto:  # minimum rectangledw, dh = np.mod(dw, 32), np.mod(dh, 32)  # wh padding  模计算pass# 造成长宽不同的原因在于此elif scaleFill:  # stretchdw, dh = 0.0, 0.0new_unpad = new_shaperatio = new_shape[0] / shape[1], new_shape[1] / shape[0]  # width, height ratiosdw /= 2  # divide padding into 2 sides # 填充分两边dh /= 2if shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=interp)  # INTER_AREA is better, INTER_LINEAR is fastertop, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border   添加边框return img, ratio, (dw, dh)
推理输出接收
  • 由于输入是矩形的,则输出应当也是矩形(这里考虑TensorRT没问题的情况,不匹配请重新转化一遍),则需要在原来的基础上添加判断形状的代码

  • 我在init中吧grid_分成x和y,用以代表矩形的两边

 # self.grid_size = 0  # grid size  分成 grid_size_x grid_size_y,用于矩形推理的实现self.grid_size_x = 0  self.grid_size_y = 0  
  • 在进行前推forward的时候,我们需要对接收的数据进行形状判断:
  • 这里就第一层为例,下采样32x32,则当输入为256x416时,,那么h = 256/32 = 8 ; w = 416/32 = 13,即当batchsize=1的时候,x的形状是:[1,3,8,13],如此依赖我们就获取了高和宽数据(实际上是网格数量)
 # 检测框具体顺序为 Center x,Center y,Width,Height# x的说明:若图片输入非正方形 如:256x416# x[2],x[3] =  256/32 = 8 , 416/32 = 13 下一层以此类推 
grid_size_y = x.size(2)
grid_size_x = x.size(3)
  • 在后续构造tensor形状的时候起作用,如:
# 注释说明
# prediction 的维度为 batch_size, num_anchors=3, grid_size, grid_size, num_classes + 5(coco:85)
prediction = (x.view(num_samples, self.num_anchors, self.num_classes + 5, grid_size_y, grid_size_x).permute(0, 1, 3, 4, 2)  # permute: 将维度换位.contiguous())
  • 还有个比较重要的点是:compute_grid_offsets方法,它是计算网格偏移的,用于抵消图像变化所带来的框体偏移
def compute_grid_offsets(self, grid_size_y,grid_size_x, img_dim, cuda=True, Half=False):# self.grid_size = grid_size# [x,y] 由于x y 可能不同,则所有有关x、y都需要分开self.grid_size_x = grid_size_xself.grid_size_y = grid_size_ygx = self.grid_size_xgy = self.grid_size_yFloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensorFloatTensor = torch.cuda.HalfTensor if Half else torch.cuda.FloatTensorself.img_dim = img_dim# 步长一定要是正方形self.stride = self.img_dim / max(gx, gy)# Calculate offsets for each grid# self.grid_x = torch.arange(gx).repeat(gy, 1).view([1, 1, gy, gx]).type(FloatTensor)self.grid_x = torch.arange(gx).repeat(gy, 1).view([1, 1, gy, gx]).type(FloatTensor)# self.grid_y = torch.arange(gx).repeat(gy, 1).view([1, 1, gy, gx]).type(FloatTensor)# self.grid_y = torch.arange(gx).repeat(gy, 1).t().contiguous().view([1, 1, gy, gx]).type(FloatTensor)# 这里的grid y 需要与gridx 的顺序不同self.grid_y = torch.arange(gy).repeat(gx, 1).t().contiguous().view([1, 1, gy, gx]).type(FloatTensor)self.scaled_anchors = FloatTensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors])# self.scaled_anchors = FloatTensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors])self.anchor_w = self.scaled_anchors[:, 0].view((1, self.num_anchors, 1, 1))self.anchor_h = self.scaled_anchors[:, 1].view((1, self.num_anchors, 1, 1))
  • 它需要计算grid_x和grid_y,此时需要将形状准确地填入,如在计算grid_y的时候,涉及到矩阵转置,如果非方阵,则涉及到长宽问题就比较重要,需要与grid_x的计算方法,相反:self.grid_y = torch.arange(gy).repeat(gx, 1).t().contiguous().view([1, 1, gy, gx]).type(FloatTensor)
总结
  • 总体原理比较简单,但是加速效果简单粗暴,真的明显,比如原来416x416编程256x416那个加速比,简单算算应该至少有三分之一吧,实际上接近40%,更加明显一点。
git地址
  • 更新更新:觉得不错的话,给小弟一个Star吧

这篇关于Jetson Nano 【14】Pytorch的YOLOv3 spp 模型中关于tensorRT+ 矩形推理问题的解决过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/777465

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st