按15分钟取数据_【数量技术宅|金融数据分析系列分享】套利策略如何神bin天降五杀,价差计算有诀窍...

本文主要是介绍按15分钟取数据_【数量技术宅|金融数据分析系列分享】套利策略如何神bin天降五杀,价差计算有诀窍...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0ad1f30685e367f61d85990915707faa.png

更多精彩内容,欢迎关注公众号:数量技术宅

01 价差计算的“误区”

我们在测试两个或多个金融资产相互运算产生的策略信号时,免不了需要涉及将不同的价格时间序列,按照时间轴进行对齐,套利策略就是其中之一。然而,大部分介绍套利策略、统计套利类的文章,对于价差序列的生成计算,处理的十分简单,基本就是两个时间序列相减。对于较为低频的信号,这样处理问题不大,但在中高频的信号领域,直接相减,会存在着一定的问题

这是因为,对于不同资产的价格序列,存在着交易所推送时间、以及到达时间的差异。即使我们回测时看到的两个Tick的时间戳是完全相同的,在实盘服务器接收推送行情的时候,也是按照先、后顺序达到的。我们在实际交易中发现,比如上海期货交易所某个品种的不同到期交割月的合约,交易所在切片数据的推送不是同时进行的,而是按照交割月的顺序推送的,例如按照RB2010、RB2101、RB2015,类似这样的先后顺序来进行推送的,其他品种也是如此,而对于同一个500ms的切片时间内,收到RB2010、RB2101、RB2015的Tick数据的时间戳,却是相同的。

再比如数字货币的跨交易所套利,两个交易所即使在相同时间发送的Tick数据,由于交易所服务器物理位置间跨度较大,造成的传输时间不同,到达我们策略信号计算服务器的时间大概率也会不同。02 一个典型的价格到达频率不同的例子 如果说行情数据到达时间有先后,直接相减计算价差会有一定的“滞后”或“未来函数”问题的话,价格到达频率不同,则根本就无法直接相减计算价差了。总之,我们需要一套更贴近实际交易的价差计算方式。

我们来看一个价格到达频率不同的例子,即两个品种数据的推送频率是不一样的。如果我们需要对股指期货、股票ETF进行期现套利策略的设计,以IC与中证500ETF的数据为例,计算期现套利的价差。

IC股指期货的Tick数据,我们的数据源是Wind,IC对应的中金所,它的行情推送频率是每1秒2笔数据,Level1免费行情推送的是1档盘口,即只有买1、卖1的数据,数据时间是股指期货的交易时间:9:29-15:00。我们来看一下IC的Tick数据样例。

110a20cacfb24887234be10e77f14640.png

再来看中证500ETF的数据,同样来源于Wind,500ETF行情数据的推送频率相比较IC要低很多,每3秒会有1笔数据,Level1免费行情有5档的盘口,即买1到买5、卖1到卖5,数据推送时间:9:15-15:00,包含股票的集合竞价时间段。我们来看一下500ETF的Tick数据样例。

e654e7b2ecc0376ca5427117de6da576.png

03 巧用Pandas的Merge函数

对于这样推送频率有差异、时间轴也有差异的数据,计算价差,我们就需要根据时间轴来进行合成。Python Pandas库的Merge函数,正好符合我们所需要的功能。我们简要介绍一下Merge函数。

pd.merge(left, right, how='inner', on=None, left_on=None,  ... )

我们在做数据合成的时候,最常用到的是前4组参数

left: 拼接的左侧DataFrame对象

right: 拼接的右侧DataFrame对象

on: 要加入的列或索引级别名称。必须在左侧和右侧DataFrame对象中找到,对于金融时间序列,一般来说是时间轴

how: One of ‘left’, ‘right’, ‘outer’, ‘inner’,默认inner。inner是取交集,outer取并集。比如left:[‘A’,‘B’,‘C’];right[’'A,‘C’,‘D’];inner取交集的话,left中出现的A会和right中出现的买一个A进行匹配拼接,如果没有是B,在right中没有匹配到,则会丢失。'outer’取并集,出现的A会进行一一匹配,没有同时出现的会将缺失的部分添加缺失值。

而这4组参数,对于套利价差计算的预处理,how字段最重要。我们用实际的数据,来看不同how字段的取值,会对最终价差的计算,带来怎样的影响。

首先,how = “inner”,取时间轴的交集,只有两个表DATETIME列都有的时间,才会出现在最终的总表。我们展示计算得到的总表,并计算价差序列后绘图。

b4cf7ae116da3ee7d3e0dbfaa9fc7a54.png

f9afa59614aa8a3734d8cdb1b02a3fed.png

其次,how = “outer”,取时间轴的并集,只要两个表DATETIME列任意一表有的时间,都会出现在最终的总表,若另一个表没有数据,则按nan值填充。

566ebdedbd6e739c4804e067875c66f3.png

由于outer的数据处理方式,存在着大量的nan值,我们无法直接计算价差,通常的处理方式是前向填充空值数据,即将nan值用离得最近的非空值进行填充替代,再计算期现(中间价)价差,并绘图。

73930173128a7651126625e590940117.png

再次,how = 'left',按左表时间轴合并。按左表(IC)的时间轴与右表逐一匹配,左表的时间轴全部保留,右表有该时间的,则并入总表,右表没有该时间的,以nan代替。

e262f963f75b4cd67b3670ca17776d4b.png

同样需要前向填充空值数据,然后才能计算期现(中间价)价差。

3ddc22f6d9c96fb25a42b6238d2ed535.png

最后,how = 'right',按右表时间轴合并。按右表(500ETF)的时间轴与左表逐一匹配,右表的时间轴全部保留,左表有该时间的,则并入总表,左表没有改时间的,以nan代替。

c1fb8c458d6742056951eb995049c899.png

由于期货数据频率相比股票ETF更高,nan主要出现在股票比期货集合竞价更早的阶段,这部分nan数据可酌情删除。

0a011937b89a9b5847b7cab2f8a4702c.png

我们将不同价差计算方式所绘制的图合并到一起,可以看到,左上how="inner"的图,点最为稀疏,因为需要同时两个价格在该时刻都有数据,才会计算价差;而右上how="outer"的图,价差点最为密集,只需其中一组价格变动,就会计算1次价差,而下方的两张图how="left"、how="right",密集程度位于两者之间。

55027dba2ed331eab680487fe416fbd0.png

04 价差计算方式不同,带来策略驱动方式的差异

价差不同的计算方式,表面来看是Merge函数所选择how的参数不同,造成的价差序列计算结果不同。然而不同how参数的选择,背后实则对应着不同的策略原理、策略逻辑。

我们无论在策略的回测中,对待行情数据,都需要采用一种“事件驱动”的方式来进行测试,这是最贴近实盘交易的回测方式。我们假设历史数据也是像实盘那样,每生成一个新的数据,推送给我们一次,而我们每收到一个新的数据,相当于是一个新的事件,这个事件驱动了后续的策略信号计算,以及信号对应的开平仓条件的判断。

我们再回到价差不同的计算方式,其对应的,实则是策略不同的驱动方式

how=‘outer’:对应的是期货、股票双路行情的并发驱动,即只要有股票、期货任意数据的更新,我们的程序就更新价差,判断是否触发交易信号,此时的信号计算和触发,最为频繁。

how = 'left':对应的是期货行情的单路驱动,即我们不管股票行情是否到达,只要期货数据更新,股票采用最新存储的数据合并计算价差,并判断是否触发交易信号。

how = 'right':对应股票行情的单路驱动,即我们不管期货行情达到与否,只要股票数据更新,期货用最新存储的数据合并计算价差,并判断是否触发交易信号,left和right的触发方式,信号不如outer频繁。

how=‘inner’:对应的是期货、股票双路行情同时驱动,我们一般在回测、实盘中均不采用这种方式,在本文第一小节,为大家介绍过,行情基本上不可能同时到达,这种驱动方式太过理想化,也会在无形中减少很多交易机会。

05 实盘交易应该选用的驱动方式

综上,我们在回测、交易中可选的交易方式,可以分为两大类:双路行情的并发驱动、单路行情的驱动。那么,这两大类不同的驱动方式,究竟又该如何选择?

笔者根据统计套利策略的实盘交易经验,提出如下几点建议:

  1. 计算价差的两类资产,有明确的活跃度区分、从属关系:例如期货的远近月(近月合约的交易活跃度通常大于远月)、股票与股指期货的期现套利(股指期货对于股票现货有价格发现的作用)等,此时应该以交易活跃、具有领先作用的品种,作为主驱动品种,采用单路行情的驱动。

  2. 计算价差的两类资产,无明确区分、从属关系:例如数字货币的跨交易所套利(OKEX、火币交易所之间的套利,活跃程度相当,关系对等),可以采用双路行情的并发驱动,以此来捕捉更多的交易机会。

  3. 一旦确定了驱动方式,在数据合并、回测、以及实盘交易系统的开发中,都需要采用同一种驱动方式,以最大程度确保回测结果与实盘交易的一致性。

如果你对于本期分享的内容有任何问题或建议,欢迎添加技术宅微信:sljsz01,与我交流

20a44b57485f2b6b8b435af1d44c1a15.png

7d6a0f9d9441c185b67eb7b4902c8afe.gif

往期干货

【数量技术宅|量化投资策略系列分享】成熟交易者期货持仓跟随策略

如何获取免费的数字货币历史数据

【数量技术宅|量化投资策略系列分享】多周期共振交易策略

【数量技术宅|金融数据分析系列分享】为什么中证500(IC)是最适合长期做多的指数

【数量技术宅 | Python爬虫系列分享】现货数据不好拿?商品季节性难跟踪?一键解决没烦恼的爬虫分享

【数量技术宅|金融数据分析系列分享】如何正确抄底商品期货、大宗商品

【数量技术宅|量化投资策略系列分享】股指期货IF分钟波动率统计策略

【数量技术宅 | Python爬虫系列分享】实时监控股市重大公告的Python爬虫

这篇关于按15分钟取数据_【数量技术宅|金融数据分析系列分享】套利策略如何神bin天降五杀,价差计算有诀窍...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_36146690/article/details/112616035
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/773716

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M