按15分钟取数据_【数量技术宅|金融数据分析系列分享】套利策略如何神bin天降五杀,价差计算有诀窍...

本文主要是介绍按15分钟取数据_【数量技术宅|金融数据分析系列分享】套利策略如何神bin天降五杀,价差计算有诀窍...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0ad1f30685e367f61d85990915707faa.png

更多精彩内容,欢迎关注公众号:数量技术宅

01 价差计算的“误区”

我们在测试两个或多个金融资产相互运算产生的策略信号时,免不了需要涉及将不同的价格时间序列,按照时间轴进行对齐,套利策略就是其中之一。然而,大部分介绍套利策略、统计套利类的文章,对于价差序列的生成计算,处理的十分简单,基本就是两个时间序列相减。对于较为低频的信号,这样处理问题不大,但在中高频的信号领域,直接相减,会存在着一定的问题

这是因为,对于不同资产的价格序列,存在着交易所推送时间、以及到达时间的差异。即使我们回测时看到的两个Tick的时间戳是完全相同的,在实盘服务器接收推送行情的时候,也是按照先、后顺序达到的。我们在实际交易中发现,比如上海期货交易所某个品种的不同到期交割月的合约,交易所在切片数据的推送不是同时进行的,而是按照交割月的顺序推送的,例如按照RB2010、RB2101、RB2015,类似这样的先后顺序来进行推送的,其他品种也是如此,而对于同一个500ms的切片时间内,收到RB2010、RB2101、RB2015的Tick数据的时间戳,却是相同的。

再比如数字货币的跨交易所套利,两个交易所即使在相同时间发送的Tick数据,由于交易所服务器物理位置间跨度较大,造成的传输时间不同,到达我们策略信号计算服务器的时间大概率也会不同。02 一个典型的价格到达频率不同的例子 如果说行情数据到达时间有先后,直接相减计算价差会有一定的“滞后”或“未来函数”问题的话,价格到达频率不同,则根本就无法直接相减计算价差了。总之,我们需要一套更贴近实际交易的价差计算方式。

我们来看一个价格到达频率不同的例子,即两个品种数据的推送频率是不一样的。如果我们需要对股指期货、股票ETF进行期现套利策略的设计,以IC与中证500ETF的数据为例,计算期现套利的价差。

IC股指期货的Tick数据,我们的数据源是Wind,IC对应的中金所,它的行情推送频率是每1秒2笔数据,Level1免费行情推送的是1档盘口,即只有买1、卖1的数据,数据时间是股指期货的交易时间:9:29-15:00。我们来看一下IC的Tick数据样例。

110a20cacfb24887234be10e77f14640.png

再来看中证500ETF的数据,同样来源于Wind,500ETF行情数据的推送频率相比较IC要低很多,每3秒会有1笔数据,Level1免费行情有5档的盘口,即买1到买5、卖1到卖5,数据推送时间:9:15-15:00,包含股票的集合竞价时间段。我们来看一下500ETF的Tick数据样例。

e654e7b2ecc0376ca5427117de6da576.png

03 巧用Pandas的Merge函数

对于这样推送频率有差异、时间轴也有差异的数据,计算价差,我们就需要根据时间轴来进行合成。Python Pandas库的Merge函数,正好符合我们所需要的功能。我们简要介绍一下Merge函数。

pd.merge(left, right, how='inner', on=None, left_on=None,  ... )

我们在做数据合成的时候,最常用到的是前4组参数

left: 拼接的左侧DataFrame对象

right: 拼接的右侧DataFrame对象

on: 要加入的列或索引级别名称。必须在左侧和右侧DataFrame对象中找到,对于金融时间序列,一般来说是时间轴

how: One of ‘left’, ‘right’, ‘outer’, ‘inner’,默认inner。inner是取交集,outer取并集。比如left:[‘A’,‘B’,‘C’];right[’'A,‘C’,‘D’];inner取交集的话,left中出现的A会和right中出现的买一个A进行匹配拼接,如果没有是B,在right中没有匹配到,则会丢失。'outer’取并集,出现的A会进行一一匹配,没有同时出现的会将缺失的部分添加缺失值。

而这4组参数,对于套利价差计算的预处理,how字段最重要。我们用实际的数据,来看不同how字段的取值,会对最终价差的计算,带来怎样的影响。

首先,how = “inner”,取时间轴的交集,只有两个表DATETIME列都有的时间,才会出现在最终的总表。我们展示计算得到的总表,并计算价差序列后绘图。

b4cf7ae116da3ee7d3e0dbfaa9fc7a54.png

f9afa59614aa8a3734d8cdb1b02a3fed.png

其次,how = “outer”,取时间轴的并集,只要两个表DATETIME列任意一表有的时间,都会出现在最终的总表,若另一个表没有数据,则按nan值填充。

566ebdedbd6e739c4804e067875c66f3.png

由于outer的数据处理方式,存在着大量的nan值,我们无法直接计算价差,通常的处理方式是前向填充空值数据,即将nan值用离得最近的非空值进行填充替代,再计算期现(中间价)价差,并绘图。

73930173128a7651126625e590940117.png

再次,how = 'left',按左表时间轴合并。按左表(IC)的时间轴与右表逐一匹配,左表的时间轴全部保留,右表有该时间的,则并入总表,右表没有该时间的,以nan代替。

e262f963f75b4cd67b3670ca17776d4b.png

同样需要前向填充空值数据,然后才能计算期现(中间价)价差。

3ddc22f6d9c96fb25a42b6238d2ed535.png

最后,how = 'right',按右表时间轴合并。按右表(500ETF)的时间轴与左表逐一匹配,右表的时间轴全部保留,左表有该时间的,则并入总表,左表没有改时间的,以nan代替。

c1fb8c458d6742056951eb995049c899.png

由于期货数据频率相比股票ETF更高,nan主要出现在股票比期货集合竞价更早的阶段,这部分nan数据可酌情删除。

0a011937b89a9b5847b7cab2f8a4702c.png

我们将不同价差计算方式所绘制的图合并到一起,可以看到,左上how="inner"的图,点最为稀疏,因为需要同时两个价格在该时刻都有数据,才会计算价差;而右上how="outer"的图,价差点最为密集,只需其中一组价格变动,就会计算1次价差,而下方的两张图how="left"、how="right",密集程度位于两者之间。

55027dba2ed331eab680487fe416fbd0.png

04 价差计算方式不同,带来策略驱动方式的差异

价差不同的计算方式,表面来看是Merge函数所选择how的参数不同,造成的价差序列计算结果不同。然而不同how参数的选择,背后实则对应着不同的策略原理、策略逻辑。

我们无论在策略的回测中,对待行情数据,都需要采用一种“事件驱动”的方式来进行测试,这是最贴近实盘交易的回测方式。我们假设历史数据也是像实盘那样,每生成一个新的数据,推送给我们一次,而我们每收到一个新的数据,相当于是一个新的事件,这个事件驱动了后续的策略信号计算,以及信号对应的开平仓条件的判断。

我们再回到价差不同的计算方式,其对应的,实则是策略不同的驱动方式

how=‘outer’:对应的是期货、股票双路行情的并发驱动,即只要有股票、期货任意数据的更新,我们的程序就更新价差,判断是否触发交易信号,此时的信号计算和触发,最为频繁。

how = 'left':对应的是期货行情的单路驱动,即我们不管股票行情是否到达,只要期货数据更新,股票采用最新存储的数据合并计算价差,并判断是否触发交易信号。

how = 'right':对应股票行情的单路驱动,即我们不管期货行情达到与否,只要股票数据更新,期货用最新存储的数据合并计算价差,并判断是否触发交易信号,left和right的触发方式,信号不如outer频繁。

how=‘inner’:对应的是期货、股票双路行情同时驱动,我们一般在回测、实盘中均不采用这种方式,在本文第一小节,为大家介绍过,行情基本上不可能同时到达,这种驱动方式太过理想化,也会在无形中减少很多交易机会。

05 实盘交易应该选用的驱动方式

综上,我们在回测、交易中可选的交易方式,可以分为两大类:双路行情的并发驱动、单路行情的驱动。那么,这两大类不同的驱动方式,究竟又该如何选择?

笔者根据统计套利策略的实盘交易经验,提出如下几点建议:

  1. 计算价差的两类资产,有明确的活跃度区分、从属关系:例如期货的远近月(近月合约的交易活跃度通常大于远月)、股票与股指期货的期现套利(股指期货对于股票现货有价格发现的作用)等,此时应该以交易活跃、具有领先作用的品种,作为主驱动品种,采用单路行情的驱动。

  2. 计算价差的两类资产,无明确区分、从属关系:例如数字货币的跨交易所套利(OKEX、火币交易所之间的套利,活跃程度相当,关系对等),可以采用双路行情的并发驱动,以此来捕捉更多的交易机会。

  3. 一旦确定了驱动方式,在数据合并、回测、以及实盘交易系统的开发中,都需要采用同一种驱动方式,以最大程度确保回测结果与实盘交易的一致性。

如果你对于本期分享的内容有任何问题或建议,欢迎添加技术宅微信:sljsz01,与我交流

20a44b57485f2b6b8b435af1d44c1a15.png

7d6a0f9d9441c185b67eb7b4902c8afe.gif

往期干货

【数量技术宅|量化投资策略系列分享】成熟交易者期货持仓跟随策略

如何获取免费的数字货币历史数据

【数量技术宅|量化投资策略系列分享】多周期共振交易策略

【数量技术宅|金融数据分析系列分享】为什么中证500(IC)是最适合长期做多的指数

【数量技术宅 | Python爬虫系列分享】现货数据不好拿?商品季节性难跟踪?一键解决没烦恼的爬虫分享

【数量技术宅|金融数据分析系列分享】如何正确抄底商品期货、大宗商品

【数量技术宅|量化投资策略系列分享】股指期货IF分钟波动率统计策略

【数量技术宅 | Python爬虫系列分享】实时监控股市重大公告的Python爬虫

这篇关于按15分钟取数据_【数量技术宅|金融数据分析系列分享】套利策略如何神bin天降五杀,价差计算有诀窍...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773716

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业