C#,最小代价多边形三角剖分MCPT(Minimum Cost Polygon Triangulation)算法与源代码

本文主要是介绍C#,最小代价多边形三角剖分MCPT(Minimum Cost Polygon Triangulation)算法与源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 最小代价多边形三角剖分算法

凸多边形的三角剖分是通过在非相邻顶点(角点)之间绘制对角线来形成的,这样对角线就不会相交。问题是如何以最小的代价找到三角剖分的代价。三角剖分的代价是其组成三角形的权重之和。每个三角形的重量是其周长(所有边的长度之和)

请参阅以下来源的示例。

多项式三角

同一凸五边形的两个三角剖分。左侧的三角测量的成本为8+2√2+2√5(约15.30),右侧的成本为4+2√2 + 4√5(约15.77)。

建议:在继续解决方案之前,请先在{IDE}上尝试您的方法。


该问题具有递归子结构。其思想是将多边形分为三部分:单个三角形、左侧的子多边形和右侧的子多边形。我们尝试所有可能的分割,像这样,找到一个最小化三角形成本加上两个子多边形三角剖分成本的分割。

设顶点从i到j的三角剖分的最小代价为最小代价(i,j)

如果j<=i+2,则

最小成本(i,j)=0

其他的

最小成本(i,j)=最小{最小成本(i,k)+最小成本(k,j)+成本(i,k,j)}

这里k从“i+1”到“j-1”变化

由边(i,j)、(j,k)和(k,i)形成的三角形的成本为

成本(i,j,k)=距离(i,j)+距离(j,k)+距离(k,i)

2 源代码

using System;
using System.Collections;
using System.Collections.Generic;using Legalsoft.Truffer.TGraph;namespace Legalsoft.Truffer.Algorithm
{public static partial class Algorithm_Gallery{public static double MCPT_Solve(TPoint[] vertices, int i, int j){if (j < (i + 2)){return 0;}double cost = float.MaxValue;for (int k = i + 1; k <= j - 1; k++){double weight = vertices[i].Distance(vertices[j]) + vertices[j].Distance(vertices[k]) + vertices[k].Distance(vertices[i]);cost = Math.Min(cost, weight + MCPT_Solve(vertices, i, k) + MCPT_Solve(vertices, k, j));}return cost;}private static double MCPT_Cost(TPoint[] points, int i, int j, int k){TPoint p1 = points[i];TPoint p2 = points[j];TPoint p3 = points[k];return TPoint.Distance(p1, p2) + TPoint.Distance(p2, p3) + TPoint.Distance(p3, p1);}public static double MCPT_Solve(TPoint[] points, int n){if (n < 3){return 0;}double[,] table = new double[n, n];for (int gap = 0; gap < n; gap++){for (int i = 0, j = gap; j < n; i++, j++){if (j < i + 2){table[i, j] = 0.0;}else{table[i, j] = 1000000.0;for (int k = i + 1; k < j; k++){double val = table[i, k] + table[k, j] + MCPT_Cost(points, i, j, k);if (table[i, j] > val){table[i, j] = val;}}}}}return table[0, n - 1];}}
}

3 源程序

using System;
using System.Collections;
using System.Collections.Generic;

using Legalsoft.Truffer.TGraph;

namespace Legalsoft.Truffer.Algorithm
{
    public static partial class Algorithm_Gallery
    {
        public static double MCPT_Solve(TPoint[] vertices, int i, int j)
        {
            if (j < (i + 2))
            {
                return 0;
            }

            double cost = float.MaxValue;

            for (int k = i + 1; k <= j - 1; k++)
            {
                double weight = vertices[i].Distance(vertices[j]) + vertices[j].Distance(vertices[k]) + vertices[k].Distance(vertices[i]);

                cost = Math.Min(cost, weight + MCPT_Solve(vertices, i, k) + MCPT_Solve(vertices, k, j));
            }

            return cost;
        }

        private static double MCPT_Cost(TPoint[] points, int i, int j, int k)
        {
            TPoint p1 = points[i];
            TPoint p2 = points[j];
            TPoint p3 = points[k];
            return TPoint.Distance(p1, p2) + TPoint.Distance(p2, p3) + TPoint.Distance(p3, p1);
        }

        public static double MCPT_Solve(TPoint[] points, int n)
        {
            if (n < 3)
            {
                return 0;
            }
            double[,] table = new double[n, n];
            for (int gap = 0; gap < n; gap++)
            {
                for (int i = 0, j = gap; j < n; i++, j++)
                {
                    if (j < i + 2)
                    {
                        table[i, j] = 0.0;
                    }
                    else
                    {
                        table[i, j] = 1000000.0;
                        for (int k = i + 1; k < j; k++)
                        {
                            double val = table[i, k] + table[k, j] + MCPT_Cost(points, i, j, k);
                            if (table[i, j] > val)
                            {
                                table[i, j] = val;
                            }
                        }
                    }
                }
            }
            return table[0, n - 1];
        }
    }
}
 

这篇关于C#,最小代价多边形三角剖分MCPT(Minimum Cost Polygon Triangulation)算法与源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/772926

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调