C#,最小代价多边形三角剖分MCPT(Minimum Cost Polygon Triangulation)算法与源代码

本文主要是介绍C#,最小代价多边形三角剖分MCPT(Minimum Cost Polygon Triangulation)算法与源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 最小代价多边形三角剖分算法

凸多边形的三角剖分是通过在非相邻顶点(角点)之间绘制对角线来形成的,这样对角线就不会相交。问题是如何以最小的代价找到三角剖分的代价。三角剖分的代价是其组成三角形的权重之和。每个三角形的重量是其周长(所有边的长度之和)

请参阅以下来源的示例。

多项式三角

同一凸五边形的两个三角剖分。左侧的三角测量的成本为8+2√2+2√5(约15.30),右侧的成本为4+2√2 + 4√5(约15.77)。

建议:在继续解决方案之前,请先在{IDE}上尝试您的方法。


该问题具有递归子结构。其思想是将多边形分为三部分:单个三角形、左侧的子多边形和右侧的子多边形。我们尝试所有可能的分割,像这样,找到一个最小化三角形成本加上两个子多边形三角剖分成本的分割。

设顶点从i到j的三角剖分的最小代价为最小代价(i,j)

如果j<=i+2,则

最小成本(i,j)=0

其他的

最小成本(i,j)=最小{最小成本(i,k)+最小成本(k,j)+成本(i,k,j)}

这里k从“i+1”到“j-1”变化

由边(i,j)、(j,k)和(k,i)形成的三角形的成本为

成本(i,j,k)=距离(i,j)+距离(j,k)+距离(k,i)

2 源代码

using System;
using System.Collections;
using System.Collections.Generic;using Legalsoft.Truffer.TGraph;namespace Legalsoft.Truffer.Algorithm
{public static partial class Algorithm_Gallery{public static double MCPT_Solve(TPoint[] vertices, int i, int j){if (j < (i + 2)){return 0;}double cost = float.MaxValue;for (int k = i + 1; k <= j - 1; k++){double weight = vertices[i].Distance(vertices[j]) + vertices[j].Distance(vertices[k]) + vertices[k].Distance(vertices[i]);cost = Math.Min(cost, weight + MCPT_Solve(vertices, i, k) + MCPT_Solve(vertices, k, j));}return cost;}private static double MCPT_Cost(TPoint[] points, int i, int j, int k){TPoint p1 = points[i];TPoint p2 = points[j];TPoint p3 = points[k];return TPoint.Distance(p1, p2) + TPoint.Distance(p2, p3) + TPoint.Distance(p3, p1);}public static double MCPT_Solve(TPoint[] points, int n){if (n < 3){return 0;}double[,] table = new double[n, n];for (int gap = 0; gap < n; gap++){for (int i = 0, j = gap; j < n; i++, j++){if (j < i + 2){table[i, j] = 0.0;}else{table[i, j] = 1000000.0;for (int k = i + 1; k < j; k++){double val = table[i, k] + table[k, j] + MCPT_Cost(points, i, j, k);if (table[i, j] > val){table[i, j] = val;}}}}}return table[0, n - 1];}}
}

3 源程序

using System;
using System.Collections;
using System.Collections.Generic;

using Legalsoft.Truffer.TGraph;

namespace Legalsoft.Truffer.Algorithm
{
    public static partial class Algorithm_Gallery
    {
        public static double MCPT_Solve(TPoint[] vertices, int i, int j)
        {
            if (j < (i + 2))
            {
                return 0;
            }

            double cost = float.MaxValue;

            for (int k = i + 1; k <= j - 1; k++)
            {
                double weight = vertices[i].Distance(vertices[j]) + vertices[j].Distance(vertices[k]) + vertices[k].Distance(vertices[i]);

                cost = Math.Min(cost, weight + MCPT_Solve(vertices, i, k) + MCPT_Solve(vertices, k, j));
            }

            return cost;
        }

        private static double MCPT_Cost(TPoint[] points, int i, int j, int k)
        {
            TPoint p1 = points[i];
            TPoint p2 = points[j];
            TPoint p3 = points[k];
            return TPoint.Distance(p1, p2) + TPoint.Distance(p2, p3) + TPoint.Distance(p3, p1);
        }

        public static double MCPT_Solve(TPoint[] points, int n)
        {
            if (n < 3)
            {
                return 0;
            }
            double[,] table = new double[n, n];
            for (int gap = 0; gap < n; gap++)
            {
                for (int i = 0, j = gap; j < n; i++, j++)
                {
                    if (j < i + 2)
                    {
                        table[i, j] = 0.0;
                    }
                    else
                    {
                        table[i, j] = 1000000.0;
                        for (int k = i + 1; k < j; k++)
                        {
                            double val = table[i, k] + table[k, j] + MCPT_Cost(points, i, j, k);
                            if (table[i, j] > val)
                            {
                                table[i, j] = val;
                            }
                        }
                    }
                }
            }
            return table[0, n - 1];
        }
    }
}
 

这篇关于C#,最小代价多边形三角剖分MCPT(Minimum Cost Polygon Triangulation)算法与源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/772926

相关文章

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

C#实现WinForm控件焦点的获取与失去

《C#实现WinForm控件焦点的获取与失去》在一个数据输入表单中,当用户从一个文本框切换到另一个文本框时,需要准确地判断焦点的转移,以便进行数据验证、提示信息显示等操作,本文将探讨Winform控件... 目录前言获取焦点改变TabIndex属性值调用Focus方法失去焦点总结最后前言在一个数据输入表单