【AI绘画】免费GPU Tesla A100 32G算力部署Stable Diffusion

2024-03-03 12:44

本文主要是介绍【AI绘画】免费GPU Tesla A100 32G算力部署Stable Diffusion,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

免责声明

在阅读和实践本文提供的内容之前,请注意以下免责声明:

  • 侵权问题: 本文提供的信息仅供学习参考,不用做任何商业用途,如造成侵权,请私信我,我会立即删除,作者不对读者因使用本文所述方法而导致的任何损失或损害负责。

  • 信息准确性: 本文提供的信息可能随时更改,作者不保证文中所述方法在未来的软件更新中仍然有效。

  • 个人风险: 读者在按照本文提供的方法操作时,应该自行承担风险。作者不对读者因使用本文所述方法而导致的任何损失或损害负责。

  • 软件兼容性: 本文中提到的软件版本和兼容性可能会受到变化。读者应该在实施前查看相关软件的官方文档,以确保使用的软件版本相互兼容。

  • 个体差异: 不同的计算机环境、操作系统版本和其他因素可能导致实际操作效果有所不同。读者在实践中可能需要进行适当的调整。

  • 建议备份: 在进行重要操作之前,建议读者备份其数据和设置,以防万一发生意外情况。

  • 社区支持: 读者如果遇到问题,建议参考相关软件的官方社区或论坛,以获取更多帮助。

    文章目录

      • 免责声明
      • 1. 引言
        • 1.1 什么是Stable Diffusion
        • 1.2 AI Studio学习与实训社区
      • 2. 注册AI Studio账号
        • 2.1 通过邀请链接注册
        • 2.2 领取免费算力
      • 3. 创建Notebook项目
        • 3.1 选择基础版
        • 3.2 配置环境
      • 4. 拉取Stable Diffusion代码
      • 5. 更换pip镜像
      • 6. 安装依赖
        • 6.1 运行安装脚本
        • 6.2 解决网络问题
      • 7. 内网穿透
        • 7.1 ngrok内网穿透
        • 7.2 natapp内网穿透(国内速度较快)
      • 8. 项目目录结构
        • 8.1 插件保存位置
        • 8.2 模型保存位置
      • 9. 结论
        • 9.1 成功部署Stable Diffusion
        • 9.2 后续探索

1. 引言

1.1 什么是Stable Diffusion

Stable Diffusion是一个基于深度学习的图像生成工具,它使用扩散模型生成高质量的图像。该项目由AUTOMATIC1111开发并在GitHub上开源。

1.2 AI Studio学习与实训社区

AI Studio是百度推出的一个在线AI学习与实训社区,提供免费的GPU算力支持,用户可以在此平台上进行深度学习的项目开发和部署。

2. 注册AI Studio账号

2.1 通过邀请链接注册

点击以下链接注册AI Studio账号:AI Studio注册链接

2.2 领取免费算力

成功注册账号后,点击“我的创作”,可以领取免费算力。

3. 创建Notebook项目

3.1 选择基础版

点击“创建项目”,选择“Notebook”,然后选择“基础版”。

3.2 配置环境

-在这里插入图片描述
创建一个notebook项目

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
选择基础版我们先配环境
在这里插入图片描述在这里插入图片描述

4. 拉取Stable Diffusion代码

在Notebook中运行以下命令,拉取Stable Diffusion代码:

git clone https://gitclone.com/github.com/AUTOMATIC1111/stable-diffusion-webui.git

在这里插入图片描述

5. 更换pip镜像

在Notebook中运行以下命令,更换pip镜像源为阿里云:

mkdir -p ~/.pip
cat <<EOF > ~/.pip/pip.conf
[global]
timeout = 6000
index-url = https://mirrors.aliyun.com/pypi/simple
trusted-host = mirrors.aliyun.com
EOF

如果需要重新生成pip配置文件,可运行以下命令删除原有配置文件:

rm -rf ~/.pip

6. 安装依赖

6.1 运行安装脚本

进入stable-diffusion-webui目录,运行安装脚本:

cd stable-diffusion-webui/
./webui.sh --skip-torch-cuda-test

在这里插入图片描述
这里下载可能非常缓慢,你可以点击链接在本地先下载再上传直接安装whl

这里我发现Stable Diffusion同样恰好通过创建虚拟环境得以可配置PyTorch环境,虚拟环境位于stable-diffusion-webui/models/venv
【深度学习】不用Conda在PP飞桨Al Studio三个步骤安装永久PyTorch环境

或者多次Ctrl+Z重试切换到更好的网络
在这里插入图片描述
这里已经配置成功,可以看到尝试链接huggingface下载初始模型,由于我们连接不上这个网站,所以会一直卡到超时自动结束,你可以在他指定的文件夹创一个同名空文件暂时替代,或者自行上传模型。
/home/aistudio/stable-diffusion-webui/models/新建一个
v1-5-pruned-emaonly.safetensors

在这里插入图片描述
可以看到连接超时后仍然自动运行

6.2 解决网络问题

由于AI Studio的网络环境问题,可能会导致安装过程中下载依赖包很慢或下载失败。可以尝试多次运行安装脚本,或者手动下载依赖包并上传到Notebook中进行安装。

7. 内网穿透

7.1 ngrok内网穿透

https://ngrok.com/
在这里插入图片描述
注册获取<your_authtoken>,不能用QQ邮箱注册
在这里插入图片描述

在Notebook中运行以下命令,下载并安装ngrok:

wget https://bin.equinox.io/c/bNyj1mQVY4c/ngrok-v3-stable-linux-amd64.tgz
chmod +x ngrok
ngrok config add-authtoken  <your_authtoken>
./ngrok http 7860

注意:需要在ngrok官网注册账号并获取authtoken。
在这里插入图片描述

通过内网穿透得到的的Forwarding链接,你可以在任何设备上访问这个网址使用Stable Diffusion
在这里插入图片描述

7.2 natapp内网穿透(国内速度较快)

在Notebook中运行以下命令,下载并安装natapp:

wget https://cdn.natapp.cn/assets/downloads/clients/2_4_0/natapp_linux_amd64/natapp

注意:需要在natapp官网注册账号并获取配置文件。
在这里插入图片描述
natapp要实名认证,提前设置映射端口
在这里插入图片描述
Web协议,7860端口
在这里插入图片描述
注册购买后获得<your_authtoken>

chmod +x natapp
./natapp -authtoken=<your_authtoken>

在这里插入图片描述
通过内网穿透得到的的Forwarding链接,你可以在任何设备上访问这个网址使用Stable Diffusion

在这里插入图片描述

8. 项目目录结构

8.1 插件保存位置

Stable Diffusion的插件保存在stable-diffusion-webui/extensions目录下。

8.2 模型保存位置

Stable Diffusion的模型保存在stable-diffusion-webui/models目录下。
我们看一下项目目录
在这里插入图片描述
插件保存在这
在这里插入图片描述
模型保存在这
在这里插入图片描述

9. 结论

9.1 成功部署Stable Diffusion

按照以上步骤,就可以成功在AI Studio上部署Stable Diffusion,并利用免费的Tesla A100 GPU算力进行AI绘画。

9.2 后续探索

在成功部署Stable Diffusion之后,可以尝试使用不同的模型和插件,进行更多的AI绘画创作。同时,也可以结合其他的深度学习技术,进一步提高生成的图像质量。
你可以通过创建数据集wgetgit下载你需要的模型或插件

这篇关于【AI绘画】免费GPU Tesla A100 32G算力部署Stable Diffusion的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769656

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti