Python实现向量自回归移动平均与外生变量模型(VARMAX算法)项目实战

本文主要是介绍Python实现向量自回归移动平均与外生变量模型(VARMAX算法)项目实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

向量自回归移动平均与外生变量模型(Vector Autoregression Moving Average with Exogenous Regressors,简称VARMAX)是一种扩展的多元时间序列分析模型,它结合了向量自回归(VAR)和向量移动平均(VMA)模型的特点,并且允许纳入外生变量作为模型的一部分。

在VARMAX模型中:

向量自回归(VAR):

VAR模型描述了一系列内生变量(即模型内部相互影响的时间序列变量)如何通过它们各自的滞后值以及其他内生变量的滞后值共同决定当前值。比如,一个经济系统中的多个宏观经济指标可能会相互影响并在过去的状态基础上共同决定当前状态。

向量移动平均(VMA):

VMA模型则考虑残差项(即观测值与模型预测值之间的误差)的滞后值对当前变量的影响。

外生变量(Exogenous Regressors):

在VARMAX模型中,除了内生变量的滞后效应之外,还包括了一组外生变量(或称解释变量、前定变量),这些变量不受模型内其他变量的影响,但可以影响模型内的内生变量。例如,在经济分析中,政策利率或者特定的经济政策变化等可能是模型中的外生变量。

综合起来,VARMAX模型能够同时捕捉内生变量之间的动态交互作用、残差项的历史依赖以及外生变量对内生变量的即时和滞后影响,从而提供更全面、灵活的多元时间序列分析框架。

本项目通过VARMAX算法来构建向量自回归移动平均与外生变量模型。   

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

date

日期

2

dln_inv

投资(Investment)的对数增长率

3

dln_inc

收入(Income)的对数增长率

4

dln_consump

消费(Consumption)的对数增长率

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

      

从上图可以看到,总共有3个变量,数据中无缺失值,共91条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。 

关键代码如下:    

4.探索性数据分析

4.1 变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,变量主要集中在-0.05~0.10之间。  

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

4.3 折线图

从上图中可以看到,数据是不断波动的。

5.构建向量自回归移动平均与外生变量模型

主要使用VARMAX算法,用于向量自回归移动平均与外生变量模型。 

5.1 构建模型

编号

模型名称

参数

1

向量自回归移动平均与外生变量模型

order=(2, 0)

2

trend='n'

3

exog=exog

5.2 模型摘要信息

6.模型评估

6.1 脉冲响应函数图

6.2 模型预测

预测结果及展示:

7.结论与展望

综上所述,本文采用了VARMAX算法来构建向量自回归移动平均与外生变量模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 获取方式一:# 项目实战合集导航:https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2# 获取方式二:链接:https://pan.baidu.com/s/1X2AKD-zOTzBJY83MGq56uA 
提取码:lzli

这篇关于Python实现向量自回归移动平均与外生变量模型(VARMAX算法)项目实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/756714

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

基于Java实现回调监听工具类

《基于Java实现回调监听工具类》这篇文章主要为大家详细介绍了如何基于Java实现一个回调监听工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录监听接口类 Listenable实际用法打印结果首先,会用到 函数式接口 Consumer, 通过这个可以解耦回调方法,下面先写一个

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QGroupBox控件的实现

《Qt中QGroupBox控件的实现》QGroupBox是Qt框架中一个非常有用的控件,它主要用于组织和管理一组相关的控件,本文主要介绍了Qt中QGroupBox控件的实现,具有一定的参考价值,感兴趣... 目录引言一、基本属性二、常用方法2.1 构造函数 2.2 设置标题2.3 设置复选框模式2.4 是否

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.