本文主要是介绍线性回归(linear_regression),多项式回归(polynomial regression)(Tensorflow实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
#回归
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as pltn_observations=100
xs=np.linspace(-3,3,n_observations)
ys=np.sin(xs)+np.random.uniform(-0.5,0.5,n_observations)
plt.scatter(xs,ys)
plt.show()X=tf.placeholder(tf.float32,name='X')
Y=tf.placeholder(tf.float32,name='Y')# just state these two parameters
W=tf.Variable(tf.random_normal([1]),name='weight')
b=tf.Variable(tf.random_normal([1]),name='bias')Y_pred=tf.add(tf.multiply(X,W),b,name="y_pred")loss=tf.square(Y-Y_pred,name='loss')learning_rate=0.01
optimizer=tf.train.ProximalGradientDescentOptimizer(learning_rate).minimize(loss)n_samples=xs.shape[0]
这篇关于线性回归(linear_regression),多项式回归(polynomial regression)(Tensorflow实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!