pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集

本文主要是介绍pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集

      • 一、算法原理
      • 二、代码
      • 三、结果
          • 1.`sor`统计滤波
          • 2.`Ransac`内点分割平面
          • 3.`Ransac`外点分割平面
      • 四、相关数据

一、算法原理

1、Ransac介绍
RANSAC(RAndom SAmple Consensus,随机采样一致)算法是从一组含有“外点”(outliers)的数据中正确估计数学模型参数的迭代算法。“外点”一般指的是数据中的噪声,比如说匹配中的误匹配和估计曲线中的离群点。所以,RANSAC也是一种“外点”检测算法。RANSAC算法是一种不确定算法,它只能在一种概率下产生结果,并且这个概率会随着迭代次数的增加而加大(之后会解释为什么这个算法是这样的)。

RANSAC主要解决样本中的外点问题,最多可处理50%的外点情况。

在这里插入图片描述
范例

可以简单总结为以下步骤:
N:样本个数 K:求解模型需要的最少的点的个数(对于直线拟合来说就是两个点,对于计算Homography矩阵就是四个点)

随机采样K个点
对该K个点拟合模型
计算其他点到拟合模型的距离。如果小于一定阈值,该点被当作内点,统计内点个数
重复M次,选择内点数最多的模型
利用所有的内点重新估计模型(可选)

RANSAC用于拟合直线:
1.随机选取K = 2 ,2个点:
在这里插入图片描述
2.拟合一条直线:
在这里插入图片描述
3.统计内点个数,内点为绿色,此时的内点个数为9(小于一定阈值计算为内点):
在这里插入图片描述
4.重复上述过程M次,找到内点数最大的模型(继续随机选点根据k=数目进行选点):
在这里插入图片描述
5.利用所有的内点重新估计直线:
在这里插入图片描述

二、代码

from pclpy import pcldef compareCloudShow(cloud1, cloud2):"""Args:在一个窗口生成2个窗口可视化点云cloud1: 点云数据1cloud2: 点云数据2"""viewer = pcl.visualization.PCLVisualizer("viewer")  # 建立可刷窗口对象 窗口名 viewerv0 = 1  # 设置标签名(0, 1标记第一个窗口)viewer.createViewPort(0.0, 0.0, 0.5, 1.0, v0)  # 创建一个可视化的窗口viewer.setBackgroundColor(0.0, 0.0, 0.0, v0)  # 设置窗口背景为黑色single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud1, 255.0, 0, 0.0)  # 将点云设置为红色viewer.addPointCloud(cloud1,          # 要添加到窗口的点云数据。single_color,    # 指定点云的颜色"sample cloud1",  # 添加的点云命名v0)  # 点云添加到的视图v1 = 2  # 设置标签名(2代表第二个窗口)viewer.createViewPort(0.5, 0.0, 1.0, 1.0, v1)  # 创建一个可视化的窗口viewer.setBackgroundColor(255.0, 255.0, 255.0, v1)  # 设置窗口背景为白色single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud2, 0.0, 255.0, 0.0)  # 将点云设置为绿色viewer.addPointCloud(cloud2,  # 要添加到窗口的点云数据。single_color,  # 指定点云的颜色"sample cloud2",  # 添加的点云命名v1)  # 点云添加到的视图# 设置点云窗口(可移除对点云可视化没有影响)viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小1,  # 点云像素"sample cloud1",  # 识别特定点云v0)  # 在那个窗口可视化viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小1,  # 点云像素"sample cloud2",  # 识别特定点云v1)  # 在那个窗口可视化viewer.addCoordinateSystem(1.0)  # 设置坐标轴 坐标轴的长度为1.0# 窗口建立while not viewer.wasStopped():viewer.spinOnce(10)if __name__ == '__main__':# 读取点云数据cloud = pcl.PointCloud.PointXYZ()reader = pcl.io.PCDReader()reader.read('res/table_scene_lms400.pcd', cloud)print('点云数目:', cloud.size())# 创建sor滤波器 参考 pclpy SOR去除异常值(统计滤波) pclpy专栏中cloud_filtered = pcl.PointCloud.PointXYZ()sor = pcl.filters.StatisticalOutlierRemoval.PointXYZ()  # 创建sor处理对象sor.setInputCloud(cloud)  # 将cloud处理sor.setMeanK(50)  # 每个点要分析的邻居数sor.setStddevMulThresh(1.0)  # 距离查询点的平均距离大于1个标准差的点都将被标记为离群值并删除sor.filter(cloud_filtered)  # sor处理后的点云保存在这里(内点)# 可视化滤波效果compareCloudShow(cloud, cloud_filtered)  # 参考 pclpy 可视化点云(多窗口可视化、单窗口多点云可视化) pclpy在专栏中coeffs = pcl.ModelCoefficients()  # 存储估计的平面参数inliers = pcl.PointIndices()  # 存储平面模型的内点索引# 创建分割objectseg = pcl.segmentation.SACSegmentation.PointXYZ()# 可选项seg.setOptimizeCoefficients(True)# 设置seg.setModelType(0)  # 0平面模型seg.setMethodType(0)  # 表示 RANSAC 算法  open3d 平面分割(Ransac算法) 专栏open3dseg.setMaxIterations(1000)  # 设置 RANSAC 算法的最大迭代次数为 1000。seg.setDistanceThreshold(0.01)  # 设置平面模型的距离阈值为 0.01,用于判断点是否为内点(inliers)# 创建滤波objectextract = pcl.filters.ExtractIndices.PointXYZ()nr_points = cloud_filtered.size()  # 获得点云数目while cloud_filtered.size() > nr_points * 0.3:# 从保留的点云中分割最大的平面成分seg.setInputCloud(cloud_filtered)  # 将滤波后的点云数据设置为分割器的输入seg.segment(inliers, coeffs)  # 分割后的内点索引保存在 inliers 中,将平面模型系数保存在 coeffsif len(inliers.indices) == 0:print('无法对给定数据集估计平面模型。')break# 提取内点(平面成分)extract.setInputCloud(cloud_filtered)  # 从点云中提取指定索引的点 和 open3d 中的select_index_by()一样extract.setIndices(inliers)  # 将计算索引进行装填extract.setNegative(False)  # 获得内点cloud_p = pcl.PointCloud.PointXYZ()extract.filter(cloud_p)# 可视化提取出来的平面compareCloudShow(cloud_filtered, cloud_p)print("点云数目:", cloud_p.size())# 再次滤波,提取外点(非平面成分)extract.setNegative(True)   # 获得外点cloud_f = pcl.PointCloud.PointXYZ()  extract.filter(cloud_f)cloud_filtered.swap(cloud_f)  # 等价于cloud_filtered = cloud_f

三、结果

1.sor统计滤波

在这里插入图片描述

2.Ransac内点分割平面

在这里插入图片描述

3.Ransac外点分割平面

在这里插入图片描述

四、相关数据

pclpy SOR去除异常值(统计滤波):pclpy SOR去除异常值(统计滤波)-CSDN博客

pclpy 可视化点云(多窗口可视化、单窗口多点云可视化):pclpy 可视化点云(多窗口可视化、单窗口多点云可视化)-CSDN博客

open3d 平面分割(Ransac算法) open3d 平面分割(Ransac算法)-CSDN博客
在这里插入图片描述

这篇关于pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745273

相关文章

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python使用Colorama库美化终端输出的操作示例

《Python使用Colorama库美化终端输出的操作示例》在开发命令行工具或调试程序时,我们可能会希望通过颜色来区分重要信息,比如警告、错误、提示等,而Colorama是一个简单易用的Python库... 目录python Colorama 库详解:终端输出美化的神器1. Colorama 是什么?2.

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

MySQL的索引失效的原因实例及解决方案

《MySQL的索引失效的原因实例及解决方案》这篇文章主要讨论了MySQL索引失效的常见原因及其解决方案,它涵盖了数据类型不匹配、隐式转换、函数或表达式、范围查询、LIKE查询、OR条件、全表扫描、索引... 目录1. 数据类型不匹配2. 隐式转换3. 函数或表达式4. 范围查询之后的列5. like 查询6