生产者消费者模式保姆级教程 (阻塞队列解除耦合性) 一文帮你从C语言版本到C++ 版本, 从理论到实现 (一文足以)

本文主要是介绍生产者消费者模式保姆级教程 (阻塞队列解除耦合性) 一文帮你从C语言版本到C++ 版本, 从理论到实现 (一文足以),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一. 图解,步步分解理论基础

1.1 使用锁 + 条件变量实现生产者消费者模式理论基础

1.2 使用信号量实现生产者消费者模式的理论基础

二. Linux环境下对于基于阻塞队列的两种实现方式  (C版本)

2.1 条件变量 + 锁实现版本

2.2  信号量实现版本

三. C++11 新特性产生的线程库实现版本

四. 总结本章

一. 图解,步步分解理论基础

1.1 使用锁 + 条件变量实现生产者消费者模式理论基础

队列为空 和 队列满的时候需要阻塞住队列, 需要使用条件变量来实现判断是否需要阻塞队列

思考1 :  生产者生产需要的是空位置存储生产的产品, 消费者消费需要的是队列中存在产品, 于是如下

  • condition1 :  free (空位, 表示队列不是满的, 存在空位)
  • condition2 :  full : (装有产平, 代表队列不是空的, 存在产品)

伪代码逻辑:

  • 当队列为空的时候, 需要等待队列中含有产品, 等待消费 ,  同时通知唤醒一下生产者, 催一下, 你快点生产喔, 队列中绝对满足有空位条件的, 你快点生产吧哥
  • 当队列为满的时候, 需要等待队列中含有空位, 等待生产,   同时通知唤醒一下消费者,  催一下,你快点消费喔, 队列中绝对满足有产品条件的, 你快点消费吧哥
  • 解释while :  防止伪唤醒  :  消费线程在等待生产者线程生产出产品唤醒自己进行消费, 但是生产者可能仅仅只是生产出来一个产品, 但是它广播告诉所有的消费者线程你们醒过来争抢这一个消费名额吧, 其实最终只能有一个消费者得偿所愿, 其他的消费者相当于被骗了, 自己刚醒过来, 但是产品别别人抢走了, 现在还是空的, 那咋办? 继续睡, 所以需要循环的进行判断自己是不是被伪唤醒了, 是的话, 继续等
while (Isempty(bq)) {Wait(full);Notify(free);           
} while (IsFull(bq)) {Wait(free);Notify(full); 
}

思考2: 队列中的产品和空位是什么样的资源??  是可能别多个线程同时争抢的资源, 所以这种多个线程争抢的写入操作的资源是什么资源?? 是 临界资源, 于是乎需要的是加锁进行原子操作. 在多个线程都想对阻塞队列进行写入操作的过程中保护阻塞队列这个临界资源的操

//伪代码
Lock();
...  //临界资源处理的逻辑代码块
Unlock();

1.2 使用信号量实现生产者消费者模式的理论基础

  • 其实大体逻辑和上述是差不多的, 只是此处没有了条件变量和锁, 换之代替的是信号量
  • 信号量:  我的理解就是具有保护特性的临界资源...   啥意思呢,   一个信号量就是一个临界资源, -pthread  链接库中包含了一系列封装好的使用这个信号量临界资源的函数.....
  • 这些函数方法本身就包含了对于多线程同步访问临界资源(共享资源的处理机制)

        int sem_init(sem_t *sem, int pshared, unsigned int value);           //初始化信号量, pshared : 0 用于线程间同步, 1 用于进程间同步, value 初始化值

       int sem_destroy(sem_t *sem);    //销毁信号量

        int sem_wait(sem_t *sem);        //消费一个临界资源信号量, 如果信号量 val 值 > 0 直接 val -= 1;  如果信号量值 == 0 了 阻塞起来等待它 > 0 再行消费

       int sem_post(sem_t *sem);       //生产一个临界资源信号量, 对应临界资源信号量 += 1, 归还资源, 同时如果之前   sem 的 val == 0 阻塞等待消费, 这个时候会相当于唤醒消费者消费

//其实信号量本身就是生产者消费者之间共享的临界资源, 通过对它的操作, 来制约了多线程的同步互斥访问这个临界资源的有条不紊的有序进行

  • 此处竟然说到了同步互斥访问临界资源了, 想必特别多的人对于同步  异步, 互斥 这些是分不清的, 此处图解一下:
  •  上述仅仅个人己见, 对于这种抽象概念的看发, 本就是随着理解层次的深入而深入的
  • 同步事件之间相互是需要等待制约的,  比如线程1 对于临界资源做写入操作的时候, 其他线程需要等待他用完之后放回去才能用....     所以同步 (暗藏相互的一种等待关系)

图解异步解耦合,  使用阻塞队列:

  •  解释异步事件, 还有很多人会从函数阻塞等待还是函数直接返回的角度来解释,  其实我觉得使用的是同样的思想, 函数不需要等待直接返回, 其实就解除了两者之间的耦合关联了, 我不需要等你准备好, 你妹准备好管我屁事, 我直接返回就是了, 你约束不了我
  • 同步事件 :   正好相反, 你没准备好我就不能直接返回,需要阻塞等待你准备好, 比如等待IO事件的发生

二. Linux环境下对于基于阻塞队列的两种实现方式  (C版本)

  • 队列的形式形式其实不重要, 重要的是阻塞, 于是我都直接使用环形队列来实现,简单方便....

2.1 条件变量 + 锁实现版本

  • 函数方法刨析:

 

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>
#include <signal.h>//定义阻塞队列
typedef  struct BlockQueue {size_t cap;//容量size_t size;//当前产品个数int front;//队头游标int tail;//队尾游标int* data; //数据域pthread_mutex_t lock;pthread_cond_t full;pthread_cond_t free;
} BlockQueue;BlockQueue* bqp;//定义全局方便信号处理时候销毁
void DestroyBlockQueue(BlockQueue* bqp) {free(bqp->data);pthread_mutex_destroy(&bqp->lock);pthread_cond_destroy(&bqp->full);pthread_cond_destroy(&bqp->free);
}
//信号处理, 销毁整个阻塞队列。 做结束处理S
void handler(int signo) {printf("ByeBye\n");DestroyBlockQueue(bqp);exit(EXIT_SUCCESS);
}//初始化阻塞队列
BlockQueue* InitQueue(int n) {BlockQueue* bqp = (BlockQueue*)malloc(sizeof(BlockQueue));bqp->cap = n;bqp->size = 0;bqp->front = bqp->tail = 0;bqp->data = (int*)malloc(sizeof(int) * n);pthread_mutex_init(&bqp->lock, NULL);pthread_cond_init(&bqp->free, NULL);pthread_cond_init(&bqp->full, NULL);return bqp;
}int IsEmpty(BlockQueue* bqp) {return bqp->size == 0;
}int IsFull(BlockQueue* bqp) {return bqp->size == bqp->cap;
}void WaitConsume(BlockQueue* bqp) {//等待消费, 等队列有产品pthread_cond_wait(&bqp->full, &bqp->lock);
}void WaitProduct(BlockQueue* bqp) {//等待生产, 等队列有空位pthread_cond_wait(&bqp->free, &bqp->lock);
}void NotifyConsume(BlockQueue* bqp) {//通知消费, 队列中有产品了pthread_cond_signal(&bqp->full);
}void NotifyProduct(BlockQueue* bqp) {//通知生产, 队列中有空位了pthread_cond_signal(&bqp->free);
}void Lock(BlockQueue* bqp) {pthread_mutex_lock(&bqp->lock);
}void Unlock(BlockQueue* bqp) {pthread_mutex_unlock(&bqp->lock);}void Push(BlockQueue* bqp, int val) {Lock(bqp);while (IsFull(bqp)) {WaitProduct(bqp);//没有空位等待生产NotifyConsume(bqp);//催促消费}bqp->data[bqp->tail++] = val;bqp->tail %= bqp->cap;Unlock(bqp);bqp->size += 1;NotifyConsume(bqp);//有产品了通知消费
}void Pop(BlockQueue* bqp, int* popval) {Lock(bqp);while (IsEmpty(bqp)) {WaitConsume(bqp);//没有产品等待消费NotifyProduct(bqp);//催促生产}*popval = bqp->data[bqp->front++];bqp->front %= bqp->cap;Unlock(bqp);bqp->size -= 1;NotifyProduct(bqp);//有空位了通知生产
}void* ConsumeRoutine(void* args) {//消费者线程执行函数BlockQueue* bqp = (BlockQueue*)args;int popval = 0;for ( ;; ) {Pop(bqp, &popval);//取出消费产品printf("PopVal is %d, and has %d Products\n", popval, bqp->size); sleep(rand() % 3);}return (void*)0;
}void* ProductRoutine(void* args) {//生产者线程执行函数BlockQueue* bqp = (BlockQueue*)args;int pushval = 0;for ( ;;  ) {pushval = rand() % 1024;//随机一个数组当作产品Push(bqp, pushval);//装入产品printf("PushVal is %d, and has %d Products\n", pushval, bqp->size); sleep(rand() % 3);}return (void*)0;
}int main() {signal(SIGINT, handler);//注册信号处理函数srand((unsigned int)time(NULL));bqp = InitQueue(30);pthread_t consume1, consume2, product1, product2; pthread_create(&product1, NULL, ProductRoutine, (void*)bqp);pthread_create(&product2, NULL, ProductRoutine, (void*)bqp);pthread_create(&consume1, NULL, ConsumeRoutine, (void*)bqp);pthread_create(&consume2, NULL, ConsumeRoutine, (void*)bqp);pthread_join(product1, NULL);pthread_join(product2, NULL);pthread_join(consume1, NULL);pthread_join(consume2, NULL);return 0;
}

2.2  信号量实现版本

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>
#include <signal.h>
#include <semaphore.h>//定义阻塞队列
typedef  struct BlockQueue {size_t cap;//容量size_t size;//当前产品个数int front;//队头游标int tail;//队尾游标int* data; //数据域sem_t data_sem;//产品信号量, 阻塞队列中有多少产品sem_t space_sem;//空位信号量. 阻塞队列中有多少空位
} BlockQueue;BlockQueue* bqp;//定义全局方便信号处理时候销毁
void DestroyBlockQueue(BlockQueue* bqp) {free(bqp->data);sem_destroy(&bqp->data_sem);sem_destroy(&bqp->space_sem);
}
//信号处理, 销毁整个阻塞队列。 做结束处理S
void handler(int signo) {printf("ByeBye\n");DestroyBlockQueue(bqp);exit(EXIT_SUCCESS);
}//初始化阻塞队列
BlockQueue* InitQueue(int n) {BlockQueue* bqp = (BlockQueue*)malloc(sizeof(BlockQueue));bqp->cap = n;bqp->size = 0;bqp->front = bqp->tail = 0;bqp->data = (int*)malloc(sizeof(int) * n);sem_init(&bqp->data_sem, 0, 0);//初始化产品量0sem_init(&bqp->space_sem, 0, n);//初始化空位量为队列容量return bqp;
}void Push(BlockQueue* bqp, int val) {sem_wait(&bqp->space_sem);//P 申请一个空位资源bqp->data[bqp->tail++] = val;bqp->tail %= bqp->cap;bqp->size += 1;sem_post(&bqp->data_sem); //V 制作或者说产生一个产品资源
}void Pop(BlockQueue* bqp, int* popval) {sem_wait(&bqp->data_sem); //P 申请一个产品*popval = bqp->data[bqp->front++];bqp->front %= bqp->cap;bqp->size -= 1;sem_post(&bqp->space_sem);//V 归还一个空位
}void* ConsumeRoutine(void* args) {//消费者线程执行函数BlockQueue* bqp = (BlockQueue*)args;int popval = 0;for ( ;; ) {Pop(bqp, &popval);//取出消费产品printf("PopVal is %d, and has %d Products\n", popval, bqp->size); sleep(rand() % 3);}return (void*)0;
}void* ProductRoutine(void* args) {//生产者线程执行函数BlockQueue* bqp = (BlockQueue*)args;int pushval = 0;for ( ;;  ) {pushval = rand() % 1024;//随机一个数组当作产品Push(bqp, pushval);//装入产品printf("PushVal is %d, and has %d Products\n", pushval, bqp->size); sleep(rand() % 3);}return (void*)0;
}int main() {signal(SIGINT, handler);srand((unsigned int)time(NULL));bqp = InitQueue(30);pthread_t consume1, consume2, product1, product2; pthread_create(&product1, NULL, ProductRoutine, (void*)bqp);pthread_create(&product2, NULL, ProductRoutine, (void*)bqp);pthread_create(&consume1, NULL, ConsumeRoutine, (void*)bqp);pthread_create(&consume2, NULL, ConsumeRoutine, (void*)bqp);pthread_join(product1, NULL);pthread_join(product2, NULL);pthread_join(consume1, NULL);pthread_join(consume2, NULL);return 0;
}

三. C++11 新特性产生的线程库实现版本

  • 首先是基础理论支撑, 函数分析什么的, 如果不清楚的可以去看如下的博客刨析

https://blog.csdn.net/weixin_53695360/article/details/122969157?spm=1001.2014.3001.5502

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <queue>
#include <windows.h>
using namespace std;
#define NUM 10class BlockQueue {
public:BlockQueue(int cap = NUM): _cap(cap){}void Push(int val) {unique_lock<mutex> _lock(mtx);while (IsFull()) {_free.wait(_lock);//没有空位生产等待NotifyConsume();//催促消费}_q.push(val);//生产产品NotifyConsume();//有产品了通知消费}void Pop(int& popval) {unique_lock<mutex> _lock(mtx);while (IsEmpty()) {_full.wait(_lock);//没有产品消费等待NotifyProduct();//催促生产}popval = _q.front();_q.pop();//消费产品NotifyProduct();//有空位了通知生产}int Size() {return _q.size();}
private:queue<int> _q;//存储队列int _cap;//容量mutex mtx;condition_variable _full;//存在产品condition_variable _free;//存在空位
private:void NotifyConsume() {_full.notify_one();//通知消费}void NotifyProduct() {_free.notify_one();//通知生产}bool IsEmpty() {return _q.size() == 0;}bool IsFull() {return _q.size() == _cap;}
};void ConsumeRoutine(void* args) {//消费者线程执行函数BlockQueue* bqp = (BlockQueue*)args;int popval = 0;for (;;) {bqp->Pop(popval);//取出消费产品printf("PopVal is %d, and has %d Products\n", popval, bqp->Size());Sleep((rand() % 3) * 100);}
}void ProductRoutine(void* args) {//生产者线程执行函数BlockQueue* bqp = (BlockQueue*)args;int pushval = 0;for (;;) {pushval = rand() % 1024;//随机一个数组当作产品bqp->Push(pushval);//装入产品printf("PushVal is %d, and has %d Products\n", pushval, bqp->Size());Sleep((rand() % 3) * 100);}
}int main() {srand((unsigned long)time(NULL));BlockQueue bq(30);thread t1(ProductRoutine, &bq);thread t2(ProductRoutine, &bq);thread t3(ConsumeRoutine, &bq);thread t4(ConsumeRoutine, &bq);t1.join();t2.join();t3.join();t4.join();return 0;
}

四. 总结本章

  • 本章主要介绍了基于阻塞队列的生产者消费者模式, 阻塞队列的作用是解除掉生产者和消费者之间的耦合关系, 消费者从阻塞队列中拿取产品,  生产者向阻塞队列中Push生产产品
  • 生产者消费者模式就是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而 通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者 要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。这个阻塞队 列就是用来给生产者和消费者解耦的。
  • 然后还介绍了一下同步等待事件  和  异步直接返回不等待的事件的区别...
  • 同步阻塞IO : 用户主线程在发起一个IO操作以后, 必须挂起等待IO 操作完成, 才能继续运行下去
  • 同步非阻塞IO :  用户主线程发起一个IO操作之后直接返回, 但是需要不是循环是否IO就绪,轮询操作。。。
  • 异步阻塞IO   :  用户主线程发起 一个 IO 操作之后还是直接返回干自己的事情, 但是不需要进行轮询了,     其他的线程会阻塞起来帮我们监视IO。 满足了就通知主线程  大哥 IO就绪了你可以干事情了
  • 最后就是使用不同的方式完成生产者消费者模式的实现

这篇关于生产者消费者模式保姆级教程 (阻塞队列解除耦合性) 一文帮你从C语言版本到C++ 版本, 从理论到实现 (一文足以)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734594

相关文章

电脑密码怎么设置? 一文读懂电脑密码的详细指南

《电脑密码怎么设置?一文读懂电脑密码的详细指南》为了保护个人隐私和数据安全,设置电脑密码显得尤为重要,那么,如何在电脑上设置密码呢?详细请看下文介绍... 设置电脑密码是保护个人隐私、数据安全以及系统安全的重要措施,下面以Windows 11系统为例,跟大家分享一下设置电脑密码的具体办php法。Windo

电脑没有仿宋GB2312字体怎么办? 仿宋GB2312字体下载安装及调出来的教程

《电脑没有仿宋GB2312字体怎么办?仿宋GB2312字体下载安装及调出来的教程》仿宋字体gb2312作为一种经典且常用的字体,广泛应用于各种场合,如何在计算机中调出仿宋字体gb2312?本文将为您... 仿宋_GB2312是公文标准字体之一,仿China编程宋是字体名称,GB2312是字php符编码标准名称(简

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫