【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零

本文主要是介绍【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 动态规划理论基础
        • 动规五部曲:
        • 出现结果不正确:
      • 1049. 最后一块石头的重量 II
      • 494. 目标和
      • 474.一和零

动态规划理论基础

动规五部曲:
  1. 确定dp数组 下标及dp[i] 的含义。
  2. 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。
  3. 初始化dp数组。
  4. 确定遍历顺序:从前到后or其他。
  5. 打印。
出现结果不正确:
  1. 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。
  2. 打印dp日志和自己想的不一样:代码实现细节出现问题。

1049. 最后一块石头的重量 II

参考文档:代码随想录

题目:

有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

  • 示例:
    输入:[2,7,4,1,8,1]
    输出:1
    解释:
    组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
    组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
    组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
    组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
  • 提示:
    1 <= stones.length <= 30
    1 <= stones[i] <= 1000

分析:
刚开始解题出现了误区,对stone从小到大的排列,偶数相邻元素之间抵消成新的值,奇数最大和最小抵消形成新的值后转为偶数的计算。一轮计算之后重复计算直到集合只剩一个元素。这个思路是重复的排列和相邻的抵消。这就不属于动态规划了,在动态规划中,将整个集合抽象为两个集合,集合1是抵消的集合,集合2是被抵消的集合。集合1-集合2就是最后的结果,要想(集合1-集合2)最小,就要使两个集合最接近,这就想到结合的和 sum/2,集合中是否存在子集和是最接近 sum/2 的,这个子集和就是所求的集合2。问题转为13.分割子集和的问题。

代码:

class Solution {
public:int lastStoneWeightII(vector<int>& stones) {int sum = 0, target = 0;for(int i = 0; i < stones.size(); i++){sum += stones[i];}target = sum/2;vector<int> dp(target+1, 0);for(int i = 0; i < stones.size(); i++){for(int j = target; j >= stones[i]; j--){dp[j] = max(dp[j], dp[j-stones[i]]+stones[i]);}}sum = sum - dp[target] - dp[target];return sum;}
};

494. 目标和

参考文档:代码随想录

分析:
正整数集合分成两个正整数的集合,left与right,一个是正数,一个是即将加负号的负数。有left-right=target; left + right = sum; 推出left = (target+sum)/2; 所有只要找到总集合中相加为left的方法个数就可以得到答案。问题转为集合划分为子集和,求实现子集和的方法数。所以是组合问题,递推公式为dp[i] = dp[i] + dp[i-nums[i]]; dp[i]表示实现i原来的方法数,dp[i-nums[i]]表示不加nums[i]的最多方法数,这个集合加入nums[i]就会得到 i。初始化时候的dp[0]应该设为1,这样不会导致之后的相加一直是0,可以理解为集合和为0有一种方法就是全部都为0。其余位置的初始化为0。

代码:

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {//分析:两个正数集合left、right,left-right=target,left+right=sum,left=(sum+target)/2//接下来计算到left的集合的方法数,另一个就是right//dp[i]含义:集合和为i的方法个数//递推公式:dp[i] = dp[i] + dp[i-nums[i]];//初始化:dp[0] = 1,其余为0//遍历顺序:0-1背包int sum = 0, left = 0;for(int i = 0; i < nums.size(); i++){sum += nums[i];}if((sum+target)%2 == 1) return 0;if((sum + target) < 0) return 0;left = (sum+target) / 2;//初始化vector<int> dp(left+1, 0);dp[0] = 1;for(int i = 0; i < nums.size(); i++){for(int j = left; j >= nums[i]; j--){dp[j] = dp[j] + dp[j-nums[i]];}} return dp[left];}
};

474.一和零

参考文档:代码随想录

分析:
dp[i][j]含义是i个0,j个1的集合中最大的字符串个数。

进而递推公式是dp[i][j] = max(dp[i][j], dp[i-zeroNum][j-oneNum]+1); 所以本题和0-1背包的滚动数组是类似的,只不过在是否放入背包的条件中不仅有0的限制还有1的限制,这表明在背包的循环体中处理的背包由一维上升到了二维。

遍历顺序上,必须先物品再背包,在物品的循环体中需要计算出该物品中0的个数和1的个数,在背包中,需要判断该不该把这个物品放入容量为i个0,j个1的背包中。在背包的遍历顺序中,应该和滚动数组的行为保持一致,需要倒序。

初始化中,有一点干扰到了我,我将0-1背包的二维初始化和这个背包的二维初始化联系起来,所以思考怎么初始化行、初始化列,但是这个联系就是错误的,dp[i][j]的含义是i个0,j个1的背包可以容纳的最多个数的字符串个数,所以dp数组中每个位置的初始化应该由之后背包的遍历中确定,刚开始的初始化和滚动数组的初始化一直,全部设为0。

代码:

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {//题目分析为有两个维度的背包,一个是m,另一个是n//dp[i][j]:有i个0,j个1的集合的最大长度。(!!!)//递推公式:dp[i][j] = max(dp[i][j], dp[i-zeroNum][j-oneNum]+1);//初始化:全0//遍历顺序:先物品再背包,因为先物品需要计算出二进制字符串中0和1的个数int zeroNum = 0, oneNum = 0;vector<vector<int>> dp(m+1, vector<int>(n+1,0));for(int i = 0; i < strs.size(); i++){zeroNum = 0, oneNum = 0;for(char c : strs[i]){if(c == '0') zeroNum++;else oneNum++;}for(int j = m; j >= zeroNum; j--){for(int k = n; k >= oneNum; k--){dp[j][k] = max(dp[j][k], dp[j-zeroNum][k-oneNum]+1);}}}return dp[m][n];}
};

这篇关于【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719616

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven