【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零

本文主要是介绍【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 动态规划理论基础
        • 动规五部曲:
        • 出现结果不正确:
      • 1049. 最后一块石头的重量 II
      • 494. 目标和
      • 474.一和零

动态规划理论基础

动规五部曲:
  1. 确定dp数组 下标及dp[i] 的含义。
  2. 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。
  3. 初始化dp数组。
  4. 确定遍历顺序:从前到后or其他。
  5. 打印。
出现结果不正确:
  1. 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。
  2. 打印dp日志和自己想的不一样:代码实现细节出现问题。

1049. 最后一块石头的重量 II

参考文档:代码随想录

题目:

有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

  • 示例:
    输入:[2,7,4,1,8,1]
    输出:1
    解释:
    组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
    组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
    组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
    组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
  • 提示:
    1 <= stones.length <= 30
    1 <= stones[i] <= 1000

分析:
刚开始解题出现了误区,对stone从小到大的排列,偶数相邻元素之间抵消成新的值,奇数最大和最小抵消形成新的值后转为偶数的计算。一轮计算之后重复计算直到集合只剩一个元素。这个思路是重复的排列和相邻的抵消。这就不属于动态规划了,在动态规划中,将整个集合抽象为两个集合,集合1是抵消的集合,集合2是被抵消的集合。集合1-集合2就是最后的结果,要想(集合1-集合2)最小,就要使两个集合最接近,这就想到结合的和 sum/2,集合中是否存在子集和是最接近 sum/2 的,这个子集和就是所求的集合2。问题转为13.分割子集和的问题。

代码:

class Solution {
public:int lastStoneWeightII(vector<int>& stones) {int sum = 0, target = 0;for(int i = 0; i < stones.size(); i++){sum += stones[i];}target = sum/2;vector<int> dp(target+1, 0);for(int i = 0; i < stones.size(); i++){for(int j = target; j >= stones[i]; j--){dp[j] = max(dp[j], dp[j-stones[i]]+stones[i]);}}sum = sum - dp[target] - dp[target];return sum;}
};

494. 目标和

参考文档:代码随想录

分析:
正整数集合分成两个正整数的集合,left与right,一个是正数,一个是即将加负号的负数。有left-right=target; left + right = sum; 推出left = (target+sum)/2; 所有只要找到总集合中相加为left的方法个数就可以得到答案。问题转为集合划分为子集和,求实现子集和的方法数。所以是组合问题,递推公式为dp[i] = dp[i] + dp[i-nums[i]]; dp[i]表示实现i原来的方法数,dp[i-nums[i]]表示不加nums[i]的最多方法数,这个集合加入nums[i]就会得到 i。初始化时候的dp[0]应该设为1,这样不会导致之后的相加一直是0,可以理解为集合和为0有一种方法就是全部都为0。其余位置的初始化为0。

代码:

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {//分析:两个正数集合left、right,left-right=target,left+right=sum,left=(sum+target)/2//接下来计算到left的集合的方法数,另一个就是right//dp[i]含义:集合和为i的方法个数//递推公式:dp[i] = dp[i] + dp[i-nums[i]];//初始化:dp[0] = 1,其余为0//遍历顺序:0-1背包int sum = 0, left = 0;for(int i = 0; i < nums.size(); i++){sum += nums[i];}if((sum+target)%2 == 1) return 0;if((sum + target) < 0) return 0;left = (sum+target) / 2;//初始化vector<int> dp(left+1, 0);dp[0] = 1;for(int i = 0; i < nums.size(); i++){for(int j = left; j >= nums[i]; j--){dp[j] = dp[j] + dp[j-nums[i]];}} return dp[left];}
};

474.一和零

参考文档:代码随想录

分析:
dp[i][j]含义是i个0,j个1的集合中最大的字符串个数。

进而递推公式是dp[i][j] = max(dp[i][j], dp[i-zeroNum][j-oneNum]+1); 所以本题和0-1背包的滚动数组是类似的,只不过在是否放入背包的条件中不仅有0的限制还有1的限制,这表明在背包的循环体中处理的背包由一维上升到了二维。

遍历顺序上,必须先物品再背包,在物品的循环体中需要计算出该物品中0的个数和1的个数,在背包中,需要判断该不该把这个物品放入容量为i个0,j个1的背包中。在背包的遍历顺序中,应该和滚动数组的行为保持一致,需要倒序。

初始化中,有一点干扰到了我,我将0-1背包的二维初始化和这个背包的二维初始化联系起来,所以思考怎么初始化行、初始化列,但是这个联系就是错误的,dp[i][j]的含义是i个0,j个1的背包可以容纳的最多个数的字符串个数,所以dp数组中每个位置的初始化应该由之后背包的遍历中确定,刚开始的初始化和滚动数组的初始化一直,全部设为0。

代码:

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {//题目分析为有两个维度的背包,一个是m,另一个是n//dp[i][j]:有i个0,j个1的集合的最大长度。(!!!)//递推公式:dp[i][j] = max(dp[i][j], dp[i-zeroNum][j-oneNum]+1);//初始化:全0//遍历顺序:先物品再背包,因为先物品需要计算出二进制字符串中0和1的个数int zeroNum = 0, oneNum = 0;vector<vector<int>> dp(m+1, vector<int>(n+1,0));for(int i = 0; i < strs.size(); i++){zeroNum = 0, oneNum = 0;for(char c : strs[i]){if(c == '0') zeroNum++;else oneNum++;}for(int j = m; j >= zeroNum; j--){for(int k = n; k >= oneNum; k--){dp[j][k] = max(dp[j][k], dp[j-zeroNum][k-oneNum]+1);}}}return dp[m][n];}
};

这篇关于【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719616

相关文章

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n