【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法

本文主要是介绍【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法是一种结合鲸鱼优化算法和混合核极限学习机的混合算法。其原理主要包含以下几个步骤:

  1. 初始化:设定鲸鱼群体的初始位置及速度,设定混合核极限学习机的初始参数。

  2. 计算适应度:根据目标函数值计算每只鲸鱼的适应度,并根据适应度选择最优解。

  3. 更新位置和速度:根据鲸鱼的适应度和目标函数值更新每只鲸鱼的位置和速度。

  4. 边界约束:对鲸鱼的位置进行边界约束处理,确保鲸鱼在合理范围内移动。

  5. 构建核极限学习机模型:利用鲸鱼算法优化后的核函数参数,构建混合核极限学习机模型。

  6. 训练模型:利用训练数据对模型进行训练,通过计算输出权重矩阵,实现对输入数据的分类。

  7. 预测:利用训练好的模型对测试数据进行预测,输出预测结果。

  8. 终止条件:当满足一定的终止条件时,算法停止迭代。常见的终止条件包括达到最大迭代次数、适应度达到预设阈值等。

通过以上步骤,WOA-HKELM算法能够利用鲸鱼优化算法优化核函数的参数,提高混合核极限学习机的分类性能和预测精度。同时,WOA-HKELM算法还具有较好的鲁棒性和可扩展性,适用于处理各种类型的数据。

鲸鱼混合核极限学习机(WOA-HKELM)是一种结合鲸鱼优化算法和混合核极限学习机的混合算法,用于回归预测问题。这种算法的优点和缺点如下:

优点:

  1. 高效性:WOA-HKELM算法结合了鲸鱼优化算法和混合核极限学习机,能够在较短时间内找到最优解,提高预测精度。

  2. 鲁棒性:WOA-HKELM算法对输入数据的异常值和噪声具有较强的鲁棒性,能够有效地避免模型出现过拟合现象。

  3. 可扩展性:WOA-HKELM算法可以应用于各种类型的数据,包括连续型、离散型、静态型和动态型等,具有较强的可扩展性。

  4. 灵活性:WOA-HKELM算法可以根据实际问题的需求,调整混合核极限学习机的参数,以获得更好的预测效果。

缺点:

  1. 参数敏感性:WOA-HKELM算法中的参数对预测结果的影响较大,需要仔细调整参数以达到最优的预测效果。

  2. 对大数据集处理能力有限:由于WOA-HKELM算法在处理大数据集时需要消耗大量的计算资源和时间,因此对于大规模数据的处理能力有限。

  3. 需要大量标注数据:WOA-HKELM算法需要大量的标注数据来进行训练和预测,而在某些领域中标注数据可能难以获取。

总体来说,WOA-HKELM算法在回归预测问题中具有较好的性能和效果,但也存在一些局限性,需要根据具体问题进行权衡和选择。

2 出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法

这篇关于【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713743

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、