【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法

本文主要是介绍【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法是一种结合鲸鱼优化算法和混合核极限学习机的混合算法。其原理主要包含以下几个步骤:

  1. 初始化:设定鲸鱼群体的初始位置及速度,设定混合核极限学习机的初始参数。

  2. 计算适应度:根据目标函数值计算每只鲸鱼的适应度,并根据适应度选择最优解。

  3. 更新位置和速度:根据鲸鱼的适应度和目标函数值更新每只鲸鱼的位置和速度。

  4. 边界约束:对鲸鱼的位置进行边界约束处理,确保鲸鱼在合理范围内移动。

  5. 构建核极限学习机模型:利用鲸鱼算法优化后的核函数参数,构建混合核极限学习机模型。

  6. 训练模型:利用训练数据对模型进行训练,通过计算输出权重矩阵,实现对输入数据的分类。

  7. 预测:利用训练好的模型对测试数据进行预测,输出预测结果。

  8. 终止条件:当满足一定的终止条件时,算法停止迭代。常见的终止条件包括达到最大迭代次数、适应度达到预设阈值等。

通过以上步骤,WOA-HKELM算法能够利用鲸鱼优化算法优化核函数的参数,提高混合核极限学习机的分类性能和预测精度。同时,WOA-HKELM算法还具有较好的鲁棒性和可扩展性,适用于处理各种类型的数据。

鲸鱼混合核极限学习机(WOA-HKELM)是一种结合鲸鱼优化算法和混合核极限学习机的混合算法,用于回归预测问题。这种算法的优点和缺点如下:

优点:

  1. 高效性:WOA-HKELM算法结合了鲸鱼优化算法和混合核极限学习机,能够在较短时间内找到最优解,提高预测精度。

  2. 鲁棒性:WOA-HKELM算法对输入数据的异常值和噪声具有较强的鲁棒性,能够有效地避免模型出现过拟合现象。

  3. 可扩展性:WOA-HKELM算法可以应用于各种类型的数据,包括连续型、离散型、静态型和动态型等,具有较强的可扩展性。

  4. 灵活性:WOA-HKELM算法可以根据实际问题的需求,调整混合核极限学习机的参数,以获得更好的预测效果。

缺点:

  1. 参数敏感性:WOA-HKELM算法中的参数对预测结果的影响较大,需要仔细调整参数以达到最优的预测效果。

  2. 对大数据集处理能力有限:由于WOA-HKELM算法在处理大数据集时需要消耗大量的计算资源和时间,因此对于大规模数据的处理能力有限。

  3. 需要大量标注数据:WOA-HKELM算法需要大量的标注数据来进行训练和预测,而在某些领域中标注数据可能难以获取。

总体来说,WOA-HKELM算法在回归预测问题中具有较好的性能和效果,但也存在一些局限性,需要根据具体问题进行权衡和选择。

2 出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法

这篇关于【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713743

相关文章

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO