时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式

2024-02-16 01:38

本文主要是介绍时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:

https://zh.wikipedia.org/w/index.php?title=%E7%A7%BB%E5%8B%95%E5%B9%B3%E5%9D%87&variant=zh-cn#_note-0

移动平均(英语:moving average,MA),又称“移动平均线”简称均线,是技术分析中一种分析时间序列数据的工具。最常见的是利用股价、回报或交易量等变数计算出移动平均。

移动平均可抚平短期波动,反映出长期趋势或周期。数学上,移动平均可视为一种卷积。

1)SMA

简单移动平均(英语:simple moving average,SMA)是某变数之前n个数值的未作加权算术平均。例如,收市价的10日简单移动平均指之前10日收市价的平均数。若设收市价为p_{1}p_{n},则方程式为:

SMA={p_{1}+p_{2}+\cdots +p_{n} \over n}

当计算连续的数值,一个新的数值加入,同时一个旧数值剔出,所以无需每次都重新逐个数值加起来:

SMA_{t1,n}=SMA_{t0,n}-{p_{1} \over n}+{p_{n+1} \over n}

2) WMA

加权移动平均(英语:weighted moving average,WMA)指计算平均值时将个别数据乘以不同数值,在技术分析中,n日WMA的最近期一个数值乘以n、次近的乘以n-1,如此类推,一直到0:

WMA_{M}={np_{M}+(n-1)p_{M-1}+\cdots +2p_{M-n+2}+p_{M-n+1} \over n+(n-1)+\cdots +2+1}

由于WMA_{​{M+1}}WMA_{​{M}}的分子相差np_{M+1}-p_{M}-\cdots -p_{M-n+1},假设p_{M}+p_{M-1}+\cdots +p_{M-n+1}为总和M:

总和M+1 =总和M +p_{M+1}-p_{M-n+1}

分子M+1 =N_{M+1}=分子M +np_{M+1}-总和M

WMA_{M+1}={N_{M+1} \over n+(n-1)+\cdots +2+1}

留意分母为三角形数,方程式为{n(n+1) \over 2}

下图显示出加权是随日子远离而递减,直至递减至零(N=15)。

3) EMA

指数移动平均(英语:exponential moving average,EMAEXMA)是以指数式递减加权的移动平均。各数值的加权影响力随时间而指数式递减,越近期的数据加权影响力越重,但较旧的数据也给予一定的加权值。下图是一例子(N=15):

加权的程度以常数α决定,α数值介乎0至1。α也可用天数N来代表:\alpha ={2 \over {N+1}},所以,N=19天,代表α=0.1。

设时间t的实际数值为Yt,而时间t的EMA则为St;时间t-1的EMA则为St-1,计算时间t≥2是方程式为:

S_{t}=\alpha \times Y_{t}+(1-\alpha )\times S_{t-1}

设今日(t1)价格为p,则今日(t1)EMA的方程式为:

{\text{EMA}}_{t1}={\text{EMA}}_{t0}+\alpha \times (p-{\text{EMA}}_{t0})

{\text{EMA}}_{t0}分拆开来如下:

{\text{EMA}}={p_{1}+(1-\alpha )p_{2}+(1-\alpha )^{2}p_{3}+(1-\alpha )^{3}p_{4}+\cdots  \over 1+(1-\alpha )+(1-\alpha )^{2}+(1-\alpha )^{3}+\cdots }

理论上这是一个无穷级数,但由于1-α少于1,各项的数值会越来越细,可以被忽略。分母方面,若有足够多项,则其数值趋向1/α。即,

{\text{EMA}}=\alpha \times \left(p_{1}+(1-\alpha )p_{2}+(1-\alpha )^{2}p_{3}+(1-\alpha )^{3}p_{4}+\cdots \right)

假设k项及以后的项被忽略,即\alpha \times \left((1-\alpha )^{k}+(1-\alpha )^{k+1}+\cdots \right),重写后可得\alpha \times (1-\alpha )^{k}\times \left(1+(1-\alpha )+(1-\alpha )^{2}\cdots \right),相当于(1-\alpha )^{k}。所以,若要包含99.9%的加权,解方程k={\log(0.001) \over \log(1-\alpha )}即可得出k。由于当N不断增加,\log \,(1-\alpha )将趋向{-2 \over N+1},简化后k大约等于3.45\times (N+1)

 

这篇关于时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713134

相关文章

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

我在移动打工的日志

客户:给我搞一下录音 我:不会。不在服务范围。 客户:是不想吧 我:笑嘻嘻(气笑) 客户:小姑娘明明会,却欺负老人 我:笑嘻嘻 客户:那我交话费 我:手机号 客户:给我搞录音 我:不会。不懂。没搞过。 客户:那我交话费 我:手机号。这是电信的啊!!我这是中国移动!! 客户:我不管,我要充话费,充话费是你们的 我:可是这是移动!!中国移动!! 客户:我这是手机号 我:那又如何,这是移动!你是电信!!