时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式

2024-02-16 01:38

本文主要是介绍时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:

https://zh.wikipedia.org/w/index.php?title=%E7%A7%BB%E5%8B%95%E5%B9%B3%E5%9D%87&variant=zh-cn#_note-0

移动平均(英语:moving average,MA),又称“移动平均线”简称均线,是技术分析中一种分析时间序列数据的工具。最常见的是利用股价、回报或交易量等变数计算出移动平均。

移动平均可抚平短期波动,反映出长期趋势或周期。数学上,移动平均可视为一种卷积。

1)SMA

简单移动平均(英语:simple moving average,SMA)是某变数之前n个数值的未作加权算术平均。例如,收市价的10日简单移动平均指之前10日收市价的平均数。若设收市价为p_{1}p_{n},则方程式为:

SMA={p_{1}+p_{2}+\cdots +p_{n} \over n}

当计算连续的数值,一个新的数值加入,同时一个旧数值剔出,所以无需每次都重新逐个数值加起来:

SMA_{t1,n}=SMA_{t0,n}-{p_{1} \over n}+{p_{n+1} \over n}

2) WMA

加权移动平均(英语:weighted moving average,WMA)指计算平均值时将个别数据乘以不同数值,在技术分析中,n日WMA的最近期一个数值乘以n、次近的乘以n-1,如此类推,一直到0:

WMA_{M}={np_{M}+(n-1)p_{M-1}+\cdots +2p_{M-n+2}+p_{M-n+1} \over n+(n-1)+\cdots +2+1}

由于WMA_{​{M+1}}WMA_{​{M}}的分子相差np_{M+1}-p_{M}-\cdots -p_{M-n+1},假设p_{M}+p_{M-1}+\cdots +p_{M-n+1}为总和M:

总和M+1 =总和M +p_{M+1}-p_{M-n+1}

分子M+1 =N_{M+1}=分子M +np_{M+1}-总和M

WMA_{M+1}={N_{M+1} \over n+(n-1)+\cdots +2+1}

留意分母为三角形数,方程式为{n(n+1) \over 2}

下图显示出加权是随日子远离而递减,直至递减至零(N=15)。

3) EMA

指数移动平均(英语:exponential moving average,EMAEXMA)是以指数式递减加权的移动平均。各数值的加权影响力随时间而指数式递减,越近期的数据加权影响力越重,但较旧的数据也给予一定的加权值。下图是一例子(N=15):

加权的程度以常数α决定,α数值介乎0至1。α也可用天数N来代表:\alpha ={2 \over {N+1}},所以,N=19天,代表α=0.1。

设时间t的实际数值为Yt,而时间t的EMA则为St;时间t-1的EMA则为St-1,计算时间t≥2是方程式为:

S_{t}=\alpha \times Y_{t}+(1-\alpha )\times S_{t-1}

设今日(t1)价格为p,则今日(t1)EMA的方程式为:

{\text{EMA}}_{t1}={\text{EMA}}_{t0}+\alpha \times (p-{\text{EMA}}_{t0})

{\text{EMA}}_{t0}分拆开来如下:

{\text{EMA}}={p_{1}+(1-\alpha )p_{2}+(1-\alpha )^{2}p_{3}+(1-\alpha )^{3}p_{4}+\cdots  \over 1+(1-\alpha )+(1-\alpha )^{2}+(1-\alpha )^{3}+\cdots }

理论上这是一个无穷级数,但由于1-α少于1,各项的数值会越来越细,可以被忽略。分母方面,若有足够多项,则其数值趋向1/α。即,

{\text{EMA}}=\alpha \times \left(p_{1}+(1-\alpha )p_{2}+(1-\alpha )^{2}p_{3}+(1-\alpha )^{3}p_{4}+\cdots \right)

假设k项及以后的项被忽略,即\alpha \times \left((1-\alpha )^{k}+(1-\alpha )^{k+1}+\cdots \right),重写后可得\alpha \times (1-\alpha )^{k}\times \left(1+(1-\alpha )+(1-\alpha )^{2}\cdots \right),相当于(1-\alpha )^{k}。所以,若要包含99.9%的加权,解方程k={\log(0.001) \over \log(1-\alpha )}即可得出k。由于当N不断增加,\log \,(1-\alpha )将趋向{-2 \over N+1},简化后k大约等于3.45\times (N+1)

 

这篇关于时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713134

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重