时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式

2024-02-16 01:38

本文主要是介绍时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:

https://zh.wikipedia.org/w/index.php?title=%E7%A7%BB%E5%8B%95%E5%B9%B3%E5%9D%87&variant=zh-cn#_note-0

移动平均(英语:moving average,MA),又称“移动平均线”简称均线,是技术分析中一种分析时间序列数据的工具。最常见的是利用股价、回报或交易量等变数计算出移动平均。

移动平均可抚平短期波动,反映出长期趋势或周期。数学上,移动平均可视为一种卷积。

1)SMA

简单移动平均(英语:simple moving average,SMA)是某变数之前n个数值的未作加权算术平均。例如,收市价的10日简单移动平均指之前10日收市价的平均数。若设收市价为p_{1}p_{n},则方程式为:

SMA={p_{1}+p_{2}+\cdots +p_{n} \over n}

当计算连续的数值,一个新的数值加入,同时一个旧数值剔出,所以无需每次都重新逐个数值加起来:

SMA_{t1,n}=SMA_{t0,n}-{p_{1} \over n}+{p_{n+1} \over n}

2) WMA

加权移动平均(英语:weighted moving average,WMA)指计算平均值时将个别数据乘以不同数值,在技术分析中,n日WMA的最近期一个数值乘以n、次近的乘以n-1,如此类推,一直到0:

WMA_{M}={np_{M}+(n-1)p_{M-1}+\cdots +2p_{M-n+2}+p_{M-n+1} \over n+(n-1)+\cdots +2+1}

由于WMA_{​{M+1}}WMA_{​{M}}的分子相差np_{M+1}-p_{M}-\cdots -p_{M-n+1},假设p_{M}+p_{M-1}+\cdots +p_{M-n+1}为总和M:

总和M+1 =总和M +p_{M+1}-p_{M-n+1}

分子M+1 =N_{M+1}=分子M +np_{M+1}-总和M

WMA_{M+1}={N_{M+1} \over n+(n-1)+\cdots +2+1}

留意分母为三角形数,方程式为{n(n+1) \over 2}

下图显示出加权是随日子远离而递减,直至递减至零(N=15)。

3) EMA

指数移动平均(英语:exponential moving average,EMAEXMA)是以指数式递减加权的移动平均。各数值的加权影响力随时间而指数式递减,越近期的数据加权影响力越重,但较旧的数据也给予一定的加权值。下图是一例子(N=15):

加权的程度以常数α决定,α数值介乎0至1。α也可用天数N来代表:\alpha ={2 \over {N+1}},所以,N=19天,代表α=0.1。

设时间t的实际数值为Yt,而时间t的EMA则为St;时间t-1的EMA则为St-1,计算时间t≥2是方程式为:

S_{t}=\alpha \times Y_{t}+(1-\alpha )\times S_{t-1}

设今日(t1)价格为p,则今日(t1)EMA的方程式为:

{\text{EMA}}_{t1}={\text{EMA}}_{t0}+\alpha \times (p-{\text{EMA}}_{t0})

{\text{EMA}}_{t0}分拆开来如下:

{\text{EMA}}={p_{1}+(1-\alpha )p_{2}+(1-\alpha )^{2}p_{3}+(1-\alpha )^{3}p_{4}+\cdots  \over 1+(1-\alpha )+(1-\alpha )^{2}+(1-\alpha )^{3}+\cdots }

理论上这是一个无穷级数,但由于1-α少于1,各项的数值会越来越细,可以被忽略。分母方面,若有足够多项,则其数值趋向1/α。即,

{\text{EMA}}=\alpha \times \left(p_{1}+(1-\alpha )p_{2}+(1-\alpha )^{2}p_{3}+(1-\alpha )^{3}p_{4}+\cdots \right)

假设k项及以后的项被忽略,即\alpha \times \left((1-\alpha )^{k}+(1-\alpha )^{k+1}+\cdots \right),重写后可得\alpha \times (1-\alpha )^{k}\times \left(1+(1-\alpha )+(1-\alpha )^{2}\cdots \right),相当于(1-\alpha )^{k}。所以,若要包含99.9%的加权,解方程k={\log(0.001) \over \log(1-\alpha )}即可得出k。由于当N不断增加,\log \,(1-\alpha )将趋向{-2 \over N+1},简化后k大约等于3.45\times (N+1)

 

这篇关于时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713134

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

对postgresql日期和时间的比较

《对postgresql日期和时间的比较》文章介绍了在数据库中处理日期和时间类型时的一些注意事项,包括如何将字符串转换为日期或时间类型,以及在比较时自动转换的情况,作者建议在使用数据库时,根据具体情况... 目录PostgreSQL日期和时间比较DB里保存到时分秒,需要和年月日比较db里存储date或者ti

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维