GPS Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics

本文主要是介绍GPS Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. Abstract

该论文[2]承接于[1], 在前一篇博客中整理. 提出一个策略搜索方法, 算法中迭代的拟合局部线性模型去优化大型连续的轨迹分布, 得到的轨迹分布被用在引导策略搜索(GPS)算法中, 学习任意参数的策略. 论文拟合时变线性动态模型去加速局部动态拟合过程, 并不学习一个全局模型. 在全局动态模型复杂并且不连续的情况下, 很难被成功学习. 该算法是model-based和model-free的混合方法, 比model-free方法需求更少的样本, 又能很好的解决model-based方法难以成功学习复杂不连续动态模型的问题. 最后, 在仿真平台上, 针对环境部分可观测的复杂机器人操作任务, 算法能够成功学习到一个复杂的神经网络策略, 并取得一个比较理想的结果.

2. Preliminaries

策略搜索一般分为两类: model-based方法, 需要用到系统的动态模型, 而实际系统往往难以得到精准的系统模型. model-free方法, 仅仅依靠现实世界尝试去寻找最优策略, 不依赖于具体系统模型. model-free方法很好的避免了这个难题, 但是策略往往需要精细的设计, 低维度表示, 否则搜索时间太长, 需求样本过多, 搜索空间过大, 最终导致搜索陷入局部最优并失败.

策略搜索方法, 一般包括: 优化策略 πθ(utxt) 的参数 θ , 代价函数 (xt,ut) 的期望 Eπθ[Tt=1(xt,ut)] . 该期望是在策略和动态模型 p(utxt) 的条件下求得. 由策略和动态模型可以确定轨迹 ζ 的分布. 代价函数期望也可表示成: Eπθ[(ζ)] .

论文所述算法, 是学习一个时变线性高斯策略 p(utxt)=N(Ktxt+kt,Ct) . 当初始状态分布是一个比较窄的高斯分布时, 该结构的策略可以使用一些特别有效的优化方法来求解. 而任意参数的策略 πθ 使用GPS算法来优化, 通过匹配一个或多个高斯策略 p 来训练. 实验论证, 这样的方法比直接学习策略的参数θ效果要好.

3. Trajectory Optimization under Unknown Dynamics

在动态模型 N(fxtxt+futut,Ft) 未知的情况下, 我们可以利用前一个的线性高斯控制器 πθ(utxt) 在实际系统中运行, 获取到轨迹, ζi={x1i,u1i,...,x

这篇关于GPS Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709323

相关文章

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

JavaScript正则表达式六大利器:`test`、`exec`、`match`、`matchAll`、`search`与`replace`详解及对比

在JavaScript中,正则表达式(Regular Expression)是一种用于文本搜索、替换、匹配和验证的强大工具。本文将深入解析与正则表达式相关的几个主要执行方法:test、exec、match、matchAll、search和replace,并对它们进行对比,帮助开发者更好地理解这些方法的使用场景和差异。 正则表达式基础 在深入解析方法之前,先简要回顾一下正则表达式的基础知识。正则

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

插件maven-search:Maven导入依赖时,使用插件maven-search拷贝需要的依赖的GAV

然后粘贴: <dependency>    <groupId>mysql</groupId>    <artifactId>mysql-connector-java</artifactId>    <version>8.0.26</version> </dependency>

深度学习--对抗生成网络(GAN, Generative Adversarial Network)

对抗生成网络(GAN, Generative Adversarial Network)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN主要用于生成数据,通过两个神经网络相互对抗,来生成以假乱真的新数据。以下是对GAN的详细阐述,包括其概念、作用、核心要点、实现过程、代码实现和适用场景。 1. 概念 GAN由两个神经网络组成:生成器(Generator)和判别器(D

A Comprehensive Survey on Graph Neural Networks笔记

一、摘要-Abstract 1、传统的深度学习模型主要处理欧几里得数据(如图像、文本),而图神经网络的出现和发展是为了有效处理和学习非欧几里得域(即图结构数据)的信息。 2、将GNN划分为四类:recurrent GNNs(RecGNN), convolutional GNNs,(GCN), graph autoencoders(GAE), and spatial–temporal GNNs(S