逻辑斯蒂回归(Logistic Regression) | 算法实现

2024-02-10 15:08

本文主要是介绍逻辑斯蒂回归(Logistic Regression) | 算法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01 起

在这篇文章中,我们学习了逻辑斯谛回归模型的算法原理:统计学习方法|logistic回归

今天我们基于算法原理,给出利用随机梯度上升算法求解逻辑斯蒂回归模型参数的过程。

我们先来回顾一下逻辑斯蒂回归模型,

  • logistic回归的目的是寻找一个非线性函数sigmoid函数的最佳拟合参数w, sigmoid(wx)=1/(1+exp(-wx)),找到最佳拟合参数w,使不同类别样本点的特征x输入后,被分到对应的分类中,sigmoid值可以认为是一个概率值,从0~1,当>0.5,分到1类,<=0.5分到0类

好了,开始实操。


02 梯度下降算法

逻辑斯蒂回归模型的求解过程可以由最优化算法完成,最常用的最优化算法是梯度下降/上升算法,又可以简化为随机梯度下降/上升算法。

一般地,梯度下降算法中的梯度是指模型损失函数对输入变量x的梯度,梯度方向是函数上升最快的方向,于是梯度下降算法是朝着梯度反方向更新系数,可以求得局部最小值,而梯度上升算法则每次朝着梯度方向更新系数,可以求得局部最大值。

如果优化目标是损失函数,那么应该使用梯度下降算法求解使损失函数最小的参数w,而本文的优化目标是二分类模型的似然函数L(w),该函数表示某样本属于某个类别的概率,所以似然函数越大越好,因此要使用梯度上升算法求似然函数L(w)的极大值。

随机梯度上升算法相比梯度上升算法,每次只使用一个样本点更新参数w,占用更少的计算资源,且可以在新数据到来时就完成参数更新,是一种在线算法,各种梯度下降算法如下:

  • 批量梯度下降算法(BGD,Batch Gradient Descent)
  • 随机梯度下降算法(SGD,Stochastic Gradient Descent)
  • 小批量梯度下降算法(MBGD,Mini-Batch Gradient Descent)

本文先给出梯度上升算法(BGA),然后给出改进的梯度上升算法——随机梯度上升算法(SGA)


03 梯度上升算法实现

思路:

  1. 初始化回归系数,即置回归系数w=(w1,w2,…,wn)为全1
  2. 将训练集各样本值带入F(X)=sigmoid(w*x)函数计算F(X)值,认为是样本的分类值(二分类01)
  3. 计算各训练样本的分类误差error(样本的真实分类值-样本的F(X))
  4. 认为本次迭代的梯度=dataMat’*error,得到一个(n,1)的矩阵,用于将回归系数向似然函数增大的方向调整
  5. 将回归系数w向似然函数增大的方向调整:w(k+1)=w(k)+a*dataMat’*error
  6. 重复2~5步,直到迭代达到指定次数或error小于某值,停止迭代,得到回归系数w,逻辑斯蒂回归模型训练完毕
#sigmoid函数(类阶跃函数,只是0>1斜率较缓,不是瞬变的)
def sigmoid(z):return 1.0/(1+np.exp(-z)) # z=w*xdef gradAscent(dataMat,labelMat,numIter=150):dataMatrix=np.mat(dataMat) #样本特征矩阵 (m,n)labelMatrix=np.mat(labelMat).transpose() #样本类别矩阵 (1,m)m,n=np.shape(dataMatrix) #m个样本,n个特征alpha=0.001 #梯度上升的步长weights=np.ones((n,1)) #初始化回归系数#开始迭代,梯度上升for i in range(numIter):#将各样本值带入F(X)=sigmoid(w*x)函数计算F(X),认为是样本在当前迭代的分类值Fx=sigmoid(dataMatrix*weights) #shape=(1,m)#计算各训练样本的分类误差error(样本的真实分类值-样本的F(X))#需要将label矩阵浮点数化,与Fx元素数值类型一致,否则报错"""这里可以加一个if判断,用于在error小于设定值时停止迭代"""error=(labelMatrix.astype(float)-Fx) #shape=(1,m) #本次迭代的梯度=dataMat'*error,意思为m个样本的n个特征 分别与 m个样本的误差相乘"""样本误差越大,下一次迭代调整就越多"""grad=dataMatrix.transpose()*error #shape=(n,1),用于将回归系数向似然函数增大的方向调整#将回归系数w向似然函数增大的方向调整:w(k+1)=w(k)+a*dataMat'*errorweights=weights+alpha*grad#直到迭代达到指定次数或error小于某值,停止迭代,得到回归系数w,逻辑斯蒂回归模型训练完毕return weights

我们使用一组二维分类数据集来测试一下算法,得到的分类边界如下图所示,其中蓝点红点分别表示数据集中划分好的不同类别,橙色线条为决策边界,是训练得到的逻辑斯蒂回归模型,


04 随机梯度上升算法实现

以上计算可以看到,梯度上升法计算量较大,即使是简单数据集计算量也很大(100条3维度数据需要进行300次乘法,再算上1000此迭代,计算量就更大了),当面对上万上亿条数据,计算复杂度就太大了。

于是我们给出改进的梯度上升算法——随机梯度上升算法,

  • 一次仅用一个样本点来更新回归系数w
  • 此方法可以在新样本到来时进行增量式的更新,因此随机梯度上升法是一种在线学习算法

随机梯度上升法思路:与梯度上升法类似,不同之处在于:

  1. 随机梯度上升法一次只用一个样本点来更新回归系数w
  2. 需要遍历所有的样本点来更新回归系数w,然后才相当于梯度上升法的一次迭代
  3. 相比于梯度上升法,随机梯度上升法每次迭代只有100次(样本数)乘法,复杂度大大降低,特别对于高维样本
def stocGradAscent(dataMat,labelMat):m,n=np.shape(dataMat) #m个样本,n个维度(特征),dataMat为listdataMatrix=np.mat(dataMat) #list转换为矩阵,便于后续计算alpha=0.01 #步子迈大点weights=np.ones((n,1)) #初始化回归系数,一维数组for i in range(m): #遍历所有样本点#第i个样本点的F(x)值,float内为第i个样本点的w*xFxi=sigmoid(float((dataMatrix[i]*weights)))#第i个样本的真实值与预测值误差,用于回归系数调整error=float(labelMat[i])-Fxi#回归系数调整,只用第i个样本点更新回归系数wweights=weights+alpha*error*dataMatrix[i].transpose()return weights

我们使用相同的数据集测试一下随机梯度上升算法训练的逻辑斯蒂回归模型,如下图,

咦,怎么感觉分类能力更弱了?

不不不,再仔细看看,随机梯度上升算法只迭代了1次,而刚才我们迭代了1000次,这样对比好像不太公平呐!

我们再改进一下,

  1. 加入多次迭代
  2. 每次迭代的步长(alpha)会被调整,越往后迭代,步长越小
    • 可缓解迭代过程中系数的波动,前几次迭代中,步长较大,即,alpha不是严格下降的,便于系数快速收敛
  3. 每次迭代中,遍历样本不是按顺序遍历的,而是随机遍历的,即,随机选取样本来更新回归系数w,每次随机从样本集中选出一个样本,更新系数,然后删除该样本点,进行下一次i迭代
    • 可减少迭代过程中回归系数的周期性波动,因为周期性波动(波形图中的小锯齿)来自于一些不能被正确分类的样本点(数据集并非线性可分),这些样本点每次被用于更新系数时会引起系数的剧烈波动
def stocGradAscentIter(dataMat,labelMat,numIter=150):m,n=np.shape(dataMat) #m个样本,n个维度(特征),dataMat为listdataMatrix=np.mat(dataMat) #list转换为矩阵,便于后续计算weights=np.ones((n,1)) #初始化回归系数,一维数组for j in range(numIter):dataIndex=list(range(m))#样本点索引,用于存储尚未用于更新系数的样本点的索引for i in range(m): #遍历所有样本点"""第j次迭代的第i个小迭代"""alpha=4/(1.0+j+i)+0.01 #每次迭代的步长(alpha)会被调整,越往后迭代,步长越小#随机选取样本点进行系数更新randIndex=np.random.randint(0,len(dataIndex)) #从尚未用于更新系数的样本点中随机选取一个样本Fxi=sigmoid(float((dataMatrix[randIndex]*weights)))error=float(labelMat[randIndex])-Fxiweights=weights+alpha*error*dataMatrix[randIndex].transpose()#删除已经用于更新系数的样本点的索引del(dataIndex[randIndex])return weights

再来看看训练效果,

对比一下使用梯度上升算法迭代1000次后的模型,改进的随机梯度上升算法只迭代了10次就已经展现出较好的分类能力了,溜~~


05 总结

本文给出了随机梯度下降/上升算法的原理和方法,并基于随机梯度上升算法求解逻辑斯蒂回归模型的参数w,完成模型训练,旨在加深对逻辑斯谛回归模型和随机梯度下降算法的进一步理解,希望对你有帮助=.=


06 参考

  1. 《统计学习方法》 李航 Chapter6
  2. 《机器学习实战》 Peter Harrington Chapter5

这篇关于逻辑斯蒂回归(Logistic Regression) | 算法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/697421

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组