共轭复数,共轭根式,共轭矩阵,共轭方向,共轭方向法,共轭梯度法,共轭分布,共轭函数,傅里叶变换的共轭对称

本文主要是介绍共轭复数,共轭根式,共轭矩阵,共轭方向,共轭方向法,共轭梯度法,共轭分布,共轭函数,傅里叶变换的共轭对称,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. 共轭复数

2. 傅里叶变换的共轭对称性

3. 共轭根式(radical conjugates)

4. 共轭矩阵(自共轭矩阵、Hermitian(埃尔米特)矩阵)

5. 共轭方向

6. 共轭方向法

7. 共轭梯度法

8. 共轭分布(conjugacy)

9. 共轭函数(对偶函数、极化函数)


共轭(conjugate )的概念在数学、物理、化学、地理等学科中都有出现。 本意:两头牛背上的架子称为轭,轭使两头牛同步行走。扩展到数学等领域,共轭即为按一定的规律相配的一对或一组。

在数学中常见的共轭有:共轭复数,共轭根式,共轭矩阵,共轭转置,共轭分布,共轭先验,共轭函数, 共轭方向,共轭方向法,共轭梯度

法。

我们在关注共轭时,主要关注共轭的配对规律,共轭的性质,以及取共轭可以带来什么样的数学或应用优势。


1. 共轭复数

配对规律:在复数中,实部相等,虚部互为相反数的两个复数互为共轭复数。

公式描述:z=a+ib 与 \widetilde{z}=a-ib 互为复数

共轭性质:1)加和为实数

                  2)在复平面上,共轭复数所对应的点关于实轴对称


2. 傅里叶变换的共轭对称性

说明:这里的共轭就是上面介绍的复数共轭,不是指傅里叶变换与傅里叶反变换是一对共轭。

定义:


3. 共轭根式(radical conjugates)

配对规律:两个不等于零的根式A、B,若它们的积AB不含根式,则称A、B互为共轭根式

共轭性质:通过相乘能把根式去掉。

描述:对根式的模式没有要求,只要满足配对规律的就都是共轭根式。


4. 共轭矩阵(自共轭矩阵、Hermitian(埃尔米特)矩阵)

描述:一般共轭矩阵是一个复数矩阵,实对称阵是Hermite阵的特例。

配对规律:矩阵中第i行第j列的元素与第j行第i列的元素互为共轭复数,的矩阵称为共轭矩阵。

公式描述:对于一个复数矩阵 A=(a_{ij}),如果a_{ij}=\widetilde{a_{ji}},则称A为共轭矩阵。

                  若用H表示矩阵的旋转取共轭操作(称为共轭转置操作),则满足A^{H}=A的矩阵是共轭矩阵。

性质:1)主对角线上的元素全是实数。

           2)若A 和B 是Hermite阵,那么它们的和A+B 也是Hermite阵

           3)若A 和B 是Hermite阵,如果满足AB=BA,那么AB与BA也是Hermite阵

           4)更多性质可参考《矩阵分析与应用(张贤达 第2版)》第101页。拥有很多很好的性质。


5. 共轭方向

组配对规律:对于一组n维的非零(列)向量\{v_1,v_2,v_3,...v_i,...v_j,...\}和一个n*n的对称正定矩阵 Q,若 v_{i}^{T}Qv_j=0,则称这组向量关于矩阵Q是互相共轭的。因为每个向量都可以表示一个方向,所以称为共轭方向。

描述:由定义可知,在高维空间中,一个方向向量的共轭方向不是唯一的,而是一组。

特例:Q为单位矩阵时,v_{i}^{T}v_j=0,此时这组向量是正交的。由此可见,正交是共轭的一种特殊情况,共轭是正交的推广。

性质:1)互为共轭的一组向量,线性无关

           2)n维空间中,关于任何一个n*n的对称正定矩阵 Q 非零的共轭向量个数不超过n


6. 共轭方向法

描述:共轭方向法(conjugate direction method)一种沿着共轭方向寻找无约束最优化问题极小点的一类方法。

对于一个二次型函数f(\vec{x})=\frac{1}{2}\vec{x}^TG\vec{x} + \vec{b} ^T\vec{x} + c, 其中\vec{x}\in R^n,Q是一个正定对称矩阵,

给定关于 Q 的一组包含k(k<=n)个共轭向量的共轭向量组 \{ \vec{d^1},\vec{d^2},...,\vec{d^i},...,\vec{d^k} \} ,与一个初始搜索点\vec{x}^{(1)},可以通过k次迭代,在\vec{x}^{(1)}\{ \vec{d^1},\vec{d^2},...,\vec{d^i},...,\vec{d^k} \}张成的k维子空间中找到f(\vec{x})的极小值。每一次迭代都沿着一个新的共轭方向更新,沿该共轭方向的更新步长是一个解析解。

以下是来自共轭方向法 的摘抄。

其中\alpha_k是沿 \vec{d}^{(k)} 方向的更新步长。\vec{d}^{(k)}是提前已知的。具体的公式证明可参考:《最优化方法(赖炎连 贺国平 主编)》的第三章,3.3节。


7. 共轭梯度法

描述:共轭梯度法可以看作一类特殊的共轭方向法,不同的是,共轭方向法在使用时需要预先定义好一组共轭方向向量。共轭梯度法克服这一缺点,共轭方向向量是随着迭代过程,当场生成下一次迭代的共轭方向。以下摘抄自:共轭梯度法

其中\beta_{k}也是解析解,具体推论与证明可参考 《最优化方法(赖炎连 贺国平 主编)》的第三章,3.3节。。


8. 共轭分布(conjugacy)

配对规律:如果两个分布满足同样的分布律(形式相同,参数不同),那么这两个分布互称为共轭分布。

性质:分布的表达式相同,参数不同

描述:共轭分布概念通常出现在贝叶斯概率理论中,如果后验概率P(θ|X)和先验概率P(θ)满足同样的分布律(形式相同,参数不同)。那么,先验分布和后验分布被叫做共轭分布,同时,先验分布叫做似然函数的共轭先验(分布)


9. 共轭函数(对偶函数、极化函数)

定义:设函数 f:R^n\rightarrow R, 定义函数f^*:R^n\rightarrow R为:

                                                       f^*(y)=\sup_{x\in dom f} (y^Tx-f(x)),

则函数f^*是函数f的共轭函数。其中dom f表示函数f的定义域。sup表示函数的上确界,即最小上界。y是共轭函数f^*的变量。

使f^*上确界有限(即 y^Tx-f(x) 在dom f 上有上确界)的所有的y\in R^n构成共轭函数f^*的定义域。下图描述了此定义。

特点:无论原函数f是否是凸函数,它的共轭函数f^*都是凸函数。

性质:1)凸函数的共轭函数的共轭函数是原函数,f^{**}=f

           2)更多具体性质可参考《凸优化(王书宁 译)》第85页

相关:可微函数的共轭函数称为函数的Legendre变换。为了区分一般情况和可微情况下所定义的共轭,一般函数的共轭有时称为Fenchel共轭


 

参考:[1] 连续时间傅里叶变换的共轭与共轭对称性(详细推导)

           [2]【机器学习之数学】02 梯度下降法、最速下降法、牛顿法、共轭方向法、拟牛顿法

           [3]《凸优化(王书宁 译)》

           [4]《最优化方法(赖炎连 贺国平 主编)》的第三章

这篇关于共轭复数,共轭根式,共轭矩阵,共轭方向,共轭方向法,共轭梯度法,共轭分布,共轭函数,傅里叶变换的共轭对称的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688038

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http