数学建模:数据相关性分析(Pearson和 Spearman相关系数)含python实现

本文主要是介绍数学建模:数据相关性分析(Pearson和 Spearman相关系数)含python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  相关性分析是一种用于衡量两个或多个变量之间关系密切程度的方法。相关性分析通常用于探索变量之间的关系,以及预测一个变量如何随着另一个变量的变化而变化。在数学建模中,这是常用的数据分析手段。
  相关性分析的结果通常用相关系数来表示,相关系数的取值范围为-1到1,其中1表示完全正相关,-1表示完全负相关,0表示没有相关性。
我们常用的相关系数包括:

  1. Pearson相关系数:用于衡量两个连续变量之间的线性关系。取值范围在 -1 到 1 之间,其中 -1 表示完全负相关,1 表示完全正相关,0 表示无线性关系。
  2. Spearman等级相关系数:用于衡量两个变量之间的单调关系,不要求变量呈线性关系。对于等级或顺序数据更为适用。

  在使用相关系数时,我们需要注意:样本越大,相关系数估计越稳定;有些相关系数对数据分布的假设比较敏感,确保你的数据满足相关方法的前提条件;相关性不代表因果关系,即使两个变量相关,也不能得出一个是因为另一个的结论。那么,对于这两种相关系数,我们如何选择呢?

Pearson相关系数

  Pearson相关系数是一种用于度量两个连续变量之间线性关系强度和方向的统计量。它通常用字母 τ \tau τ 表示,取值范围在 -1 到 1 之间。
  计算皮尔逊相关性时,要了解它要符合5个假设:连续变量;两个变量之间存在一定线性关系;两个变量应该大致符合正态分布;数据集中每个观测数据包括成对数据;数据集中不应包括极端异常值数据。
公式为: τ = ∑ ( x i − x ‾ ) ( y i − y ‾ ) ∑ ( x i − x ‾ ) 2 ⋅ ∑ ( y i − y ‾ ) 2 \tau=\frac {\sum(x_i-\overline x)(y_i-\overline y)}{\sqrt{\sum(x_i-\overline x)^2\cdot\sum(y_i-\overline y)^2}} τ=(xix)2(yiy)2 (xix)(yiy)  其中, x i x_i xi y i y_i yi分别是两个变量的观察值, x ‾ \overline x x y ‾ \overline y y分别是两个变量的均值。
  Pearson相关系数假设两个变量之间的关系是线性的,因此它可能不适用于非线性关系的情况。在数据中存在异常值或数据不符合正态分布的情况下,Pearson相关系数的解释力也可能受到影响。在这些情况下,Spearman等级相关系数可能更为适用,因为它们对于非线性关系和异常值更具有鲁棒性。

Spearman等级相关系数

  Spearman等级相关系数(Spearman’s rank correlation coefficient),通常用符号 ρ \rho ρ表示,是一种用于度量两个变量之间的单调关系(不一定是线性关系)的统计量。Spearman相关系数基于变量的等级或秩次而不是具体的数值。这使得它对于数据的分布形状和是否满足正态分布的要求都相对较为鲁棒。
  计算Spearman等级相关系数的步骤:对于每个变量,将其观察值按照大小进行排名,即从最小到最大依次排列,并用秩次表示;对于每一对观察值,计算其等级差(即秩次差);计算等级差的平方和;使用公式将等级差的平方和转换为Spearman相关系数。
  设 D i D_i Di为变量X和Y对应的秩次差,n为样本大小,Spearman相关系数的计算公式为: ρ = 1 − 6 ∑ D i 2 n ( n 2 − 1 ) \rho=1-\frac{6\sum D_i^2}{n(n^2-1)} ρ=1n(n21)6Di2  Spearman相关系数的取值范围在 -1 到 1 之间:当 ρ=1 时,表示存在完全的正单调关系,即一个变量的增加伴随着另一个变量的增加;当 ρ=−1 时,表示存在完全的负单调关系,即一个变量的增加伴随着另一个变量的减少;当 ρ=0 时,表示两个变量之间没有单调关系。
  Spearman相关系数对于非线性关系和异常值的敏感性相对较低,因此在数据不满足正态分布、存在异常值或者存在非线性关系的情况。

python代码实现


import pandas as pd# 示例数据
df = pd.DataFrame({'data1': [1, 2, 3, 4, 5], 'data2': [5, 4, 3, 2, 1]})# 计算 Pearson 相关系数
pearson_corr = df['data1'].corr(df['data2'])# 计算 Spearman 等级相关系数
spearman_corr = df['data1'].corr(df['data2'], method='spearman')print("Pearson 相关系数:", pearson_corr)
print("Spearman 等级相关系数:", spearman_corr)# Pearson 相关系数: -0.9999999999999999
# Spearman 等级相关系数: -0.9999999999999999

相关系数热力图:
在这里插入图片描述

这篇关于数学建模:数据相关性分析(Pearson和 Spearman相关系数)含python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/685886

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象