牛客多校 第一场J.Easy Integration 定积分公式推导 阶乘逆元

本文主要是介绍牛客多校 第一场J.Easy Integration 定积分公式推导 阶乘逆元,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

https://ac.nowcoder.com/acm/contest/5666/J
求一个定积分,并将结果用逆元表示

定积分公式推导:

好像是啥Wallis’ integrals
其实求出前几个,然后oeis一下可以找到规律
但也可以做一做定积分
在这里插入图片描述
在这里插入图片描述

思路:

公式得到了,接下来就是求逆元了,感觉普通求逆元会炸,这里要用阶乘逆元

代码:

#include<bits/stdc++.h>
#define mem(x) memset(x,0,sizeof(x))
using namespace std;
typedef long long ll;
const ll maxn=2e6+10;
const ll MOD=998244353;
ll T,n,t;
ll fac[maxn+10],inv[maxn+10];
ll QPow(ll x, ll n)
{ll ret = 1;ll tmp = x % MOD;while (n){if (n & 1){ret = (ret * tmp) % MOD;}tmp = tmp * tmp % MOD;n >>= 1;}return ret;
}
void init()
{fac[0] = 1;for (int i = 1; i < maxn; i++){fac[i] = fac[i - 1] * i % MOD;}inv[maxn - 1] = QPow(fac[maxn - 1], MOD - 2);for (int i = maxn - 2; i >= 0; i--){inv[i] = inv[i + 1] * (i + 1) % MOD;}
}
bool flag;
int main()
{init();while(scanf("%lld",&n)!=EOF){t=(((fac[n]*fac[n])%MOD)*inv[2*n+1])%MOD;cout<<t<<endl;}return 0;
}

这篇关于牛客多校 第一场J.Easy Integration 定积分公式推导 阶乘逆元的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680128

相关文章

hdu4828(卡特兰数+逆元)

这题的前几个数据分别为1,2,5,14,32......................然后确定这是个卡特兰数列 下面来介绍下卡特兰数,它的递推式为f[i+1] = f[i]*(4*n - 6)/n,其中f[2] = f[3] =1;f[4] = 2;f[5] = 14;f[6] = 32.................................. 但是这题的n太大了,所以要用到逆元,

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟

每日一题|四舍五入 四舍五入 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目: 牛牛发明了一种新的四舍五入应用于整数,对个位四舍五入,规则如下 12345->12350 12399->12400 输入描述: 输入一个整数n(0<=n<=109 ) 输出描述: 输出一个整数

微积分-积分应用5.4(功)

术语“功”在日常语言中用来表示完成一项任务所需的总努力量。在物理学中,它有一个依赖于“力”概念的技术含义。直观上,你可以将力理解为对物体的推或拉——例如,一个书本在桌面上的水平推动,或者地球对球的向下拉力。一般来说,如果一个物体沿着一条直线运动,位置函数为 s ( t ) s(t) s(t),那么物体上的力 F F F(与运动方向相同)由牛顿第二运动定律给出,等于物体的质量 m m m 与其

LibSVM学习(六)——easy.py和grid.py的使用

我们在“LibSVM学习(一)”中,讲到libSVM有一个tools文件夹,里面包含有四个python文件,是用来对参数优选的。其中,常用到的是easy.py和grid.py两个文件。其实,网上也有相应的说明,但很不系统,下面结合本人的经验,对使用方法做个说明。        这两个文件都要用python(可以在http://www.python.org上下载到,需要安装)和绘图工具gnup

c++习题30-求10000以内N的阶乘

目录 一,题目  二,思路 三,代码    一,题目  描述 求10000以内n的阶乘。 输入描述 只有一行输入,整数n(0≤n≤10000)。 输出描述 一行,即n!的值。 用例输入 1  4 用例输出 1  24   二,思路 n    n!           0    1 1    1*1=1 2    1*2=2 3    2*3=6 4

二维旋转公式

二维旋转公式 ros的tf工具包可以很方便的实现任意坐标系之间的坐标转换。但是,如果只是想简单的测试想法,而又不想编写过于庞杂的代码,考虑自己写二维旋转的函数。而与二维旋转问题对偶的另一个问题便是二维坐标系旋转变换。这两个问题的形式基本一样,只是旋转的角度相差一个负号。就是这个容易搞混,所以做个笔记,以备查用。 1. 二维旋转公式(算法) 而(此文只针对二维)旋转则是表示某一坐标点 ( x