代码随想录算法训练营第三十八天 | 509. 斐波那契数、 70. 爬楼梯、746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第三十八天 | 509. 斐波那契数、 70. 爬楼梯、746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

过年回家,断更了一天,后面一定补上。

题目链接:509. 斐波那契数

文章讲解:代码随想录 509. 斐波那契数讲解

视频讲解:手把手带你入门动态规划 | leetcode:509.斐波那契数

思路和解法

题目:
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。
想法:
今天正式开始动态规划的题目,很激动,其实没有那么难!每道dp题目我都会严格按照理论篇的五部曲理清思路解题。

class Solution {
public:int fib(int n) {//1、确定dp数组及下标意义 代表下标为n的斐波那契数//2、确定递推公式//3、dp数组如何初始化//4、确定遍历顺序//5、举例推到dp数组if (n <= 1) return n;//节省空间,只维护两个数int dp[2];dp[0] = 0;dp[1] = 1;for (int i = 2; i <= n; i++) {int sum = dp[0] + dp[1];//更新dp数组dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};

题目链接:70. 爬楼梯

文章讲解:代码随想录 70. 爬楼梯讲解

视频讲解:带你学透动态规划-爬楼梯|LeetCode:70.爬楼梯)

思路和解法

题目:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

class Solution {
public:int climbStairs(int n) {//1、确定dp数组及下标意义 dp[i]:上到第i阶有多少种方法//2、确定递推公式 到i阶有两种 i-1阶到i阶 i-2阶到i阶 所以到i阶方法是dp[i - 1] + dp[1 - 2]//3、dp数组初始化 dp[1] =  1, dp[2] = 2;//4、确定遍历顺序 从前向后遍历//5、举例推导dp数组if (n <= 2) return n;//只维护两个值int dp[2];dp[0] = 1;dp[1] = 2;for (int i = 3; i <= n; i++) {int sum = dp[0] + dp[1];dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};

题目链接:746. 使用最小花费爬楼梯

文章讲解:代码随想录 746. 使用最小花费爬楼梯讲解

视频讲解:动态规划开更了!| LeetCode:746. 使用最小花费爬楼梯

思路和解法

题目:
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {//1、确定dp数组及下标含义 dp[i]到i阶阶梯最小花费//2、确定递推公式 dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])//3、dp数组初始化 dp[0] = 0; dp[1] = 0;//4、确定遍历顺序 从前向后//5、举例推导dp数组if (cost.size() <= 1) return 0;//dp数组int dp[cost.size() + 1];dp[0] = 0;dp[1] = 0;//从下标2开始计算for (int i = 2; i <= cost.size(); i++) {dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.size()];}
};

这篇关于代码随想录算法训练营第三十八天 | 509. 斐波那契数、 70. 爬楼梯、746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/678898

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Pydantic中Optional 和Union类型的使用

《Pydantic中Optional和Union类型的使用》本文主要介绍了Pydantic中Optional和Union类型的使用,这两者在处理可选字段和多类型字段时尤为重要,文中通过示例代码介绍的... 目录简介Optional 类型Union 类型Optional 和 Union 的组合总结简介Pyd

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat