深度学习实战 | 卷积神经网络LeNet手写数字识别(带手写板GUI界面)

本文主要是介绍深度学习实战 | 卷积神经网络LeNet手写数字识别(带手写板GUI界面),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在深度学习领域,卷积神经网络(Convolutional Neural Network, CNN)是一种广泛应用于图像识别任务的神经网络结构。LeNet是一种经典的CNN结构,被广泛应用于基础的图像分类任务。本文将介绍如何使用LeNet卷积神经网络实现手写数字识别,并使用Pytorch实现LeNet手写数字识别,使用PyQt5实现手写板GUI界面,使用户能够通过手写板输入数字并进行识别。

请添加图片描述

完整代码下载:Python手写数字识别带手写板GUI界面 Pytorch代码 含训练模型 (付费资源,如果你觉得这篇博客对你有帮助,欢迎购买支持~)

1. LeNet卷积神经网络

LeNet是由Yann LeCun等人于1998年提出的卷积神经网络结构,主要用于手写字符识别。在本文中,我们将使用LeNet结构构建一个用于手写数字识别的神经网络模型。以下是LeNet的基本结构:

请添加图片描述

Layer 1: Convolutional Layer- Input: 28x28x1 (灰度图像)- Filter: 5x5, Stride: 1, Depth: 6- Activation: Sigmoid- Output: 28x28x6Layer 2: Average Pooling Layer- Input: 28x28x6- Pooling: 2x2, Stride: 2- Output: 14x14x6Layer 3: Convolutional Layer- Input: 14x14x6- Filter: 5x5, Stride: 1, Depth: 16- Activation: Sigmoid- Output: 10x10x16Layer 4: Average Pooling Layer- Input: 10x10x16- Pooling: 2x2, Stride: 2- Output: 5x5x16Layer 5: Fully Connected Layer- Input: 5x5x16- Output: 120- Activation: SigmoidLayer 6: Fully Connected Layer- Input: 120- Output: 84- Activation: SigmoidLayer 7: Output Layer- Input: 84- Output: 10 (对应0-9的数字)- Activation: Softmax

2. 手写数字识别实现

使用深度学习框架(例如Pytorch)构建LeNet模型:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.conv1 = nn.Conv2d(1, 6, kernel_size=5)self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2)self.conv2 = nn.Conv2d(6, 16, kernel_size=5)self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = F.sigmoid(self.conv1(x))x = self.pool1(x)x = F.sigmoid(self.conv2(x))x = self.pool2(x)x = x.view(-1, 16 * 5 * 5)x = F.sigmoid(self.fc1(x))x = F.sigmoid(self.fc2(x))x = self.fc3(x)return F.log_softmax(x, dim=1)

并使用手写数字数据集MNIST进行训练。确保正确实现数据预处理和模型训练过程:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from net import Netif __name__ == "__main__":# 设置训练参数batch_size = 64epochs = 140device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 数据集transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform)trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True)# 输出提示信息print("batch_size:", batch_size)print("data_batches:", len(trainloader))print("epochs:", epochs)# 神经网络net = Net().to(device)net.load_state_dict(torch.load('model.pth'))# 损失函数和优化器criterion = nn.NLLLoss()optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)# 训练网络for epoch in range(epochs):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = datainputs, labels = Variable(inputs).to(device), Variable(labels).to(device)# 反向传播优化参数optimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 938 == 937:    # 每轮输出损失值print('[epoch: %d, batches: %d] loss: %.5f' %(epoch + 1, i + 1, running_loss / 2000))running_loss = 0.0torch.save(net.state_dict(), './model.pth')  # 每轮保存模型参数print('Finished Training')

3. 手写板GUI界面开发

模型训练完成后,为了让用户通过手写板输入数字,我们将开发一个简单直观的GUI界面。使用GUI库(例如PyQt5),创建一个窗口,包含一个手写板区域,用户可以在上面写数字。添加一个识别按钮,点击后将手写板上的数字送入LeNet模型进行识别,并在界面上显示识别结果。

以下是PyQt5代码示例:

from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtCore import *
import sysimport torch
from utils import *
from net import Netclass MainWindow(QMainWindow):def __init__(self):super().__init__()self.title = '手写数字识别'self.initUI()def initUI(self):self.setWindowTitle(self.title)self.setMinimumSize(500, 400)self.main_widget = QWidget()self.main_layout = QGridLayout()self.main_widget.setLayout(self.main_layout)self.setCentralWidget(self.main_widget)self.canvas = Canvas()self.canvas.setFixedSize(300,300)self.label = QLabel()self.label.setFixedSize(100,100)self.label.setText('识别结果')self.label.setStyleSheet("font-size:15px;color:red") self.clear_button = QPushButton('清除')self.clear_button.setFixedSize(100,50)self.clear_button.clicked.connect(self.canvas.clear)self.recognize_button = QPushButton('识别')self.recognize_button.setFixedSize(100,50)self.recognize_button.clicked.connect(self.recognize)self.main_layout.addWidget(self.canvas,0,0,3,1)self.main_layout.addWidget(self.label,0,1)self.main_layout.addWidget(self.clear_button,1,1)self.main_layout.addWidget(self.recognize_button,2,1)def recognize(self):self.canvas.recognize()self.label.setText('识别结果: ' + str(self.canvas.recognize()))class Canvas(QLabel):x0=-10; y0=-10; x1=-10; y1=-10def __init__(self):super(Canvas,self).__init__()self.pixmap = QPixmap(300, 300)self.pixmap.fill(Qt.white)self.Color=Qt.blueself.penwidth=10def paintEvent(self,event):painter=QPainter(self.pixmap)painter.setPen(QPen(self.Color,self.penwidth,Qt.SolidLine))painter.drawLine(self.x0,self.y0,self.x1,self.y1)Label_painter=QPainter(self)Label_painter.drawPixmap(2,2,self.pixmap)def mousePressEvent(self, event):self.x1=event.x()self.y1=event.y()def mouseMoveEvent(self, event):self.x0 = self.x1self.y0 = self.y1self.x1 = event.x()self.y1 = event.y()self.update()def clear(self):self.x0=-10; self.y0=-10; self.x1=-10; self.y1=-10self.pixmap.fill(Qt.white)self.update()def recognize(self):arr = pixmap2np(self.pixmap)arr = 255 - arr[:,:,2]arr = clip_image(arr)arr = resize_image(arr)arr = np.expand_dims(arr, axis=0)arr_batch = np.expand_dims(arr, axis=0)tensor = torch.FloatTensor(arr_batch)tensor = (tensor/255 - 0.5) * 2possibles = net(tensor).detach().numpy()result = np.argmax(possibles)return resultif __name__ == '__main__':net = Net()net.load_state_dict(torch.load('model.pth'))app = QApplication(sys.argv)win = MainWindow()win.show()sys.exit(app.exec_())

这个例子中,用户可以在手写板上写数字,点击识别按钮后,程序将手写板上的数字送入LeNet模型进行识别,并在界面上显示识别结果。

通过本文的实践,你可以学到如何使用LeNet卷积神经网络实现手写数字识别,以及如何结合GUI开发一个手写板界面,更直观地进行数字识别交互。希望这篇博客对有所帮助。

完整代码下载:Python手写数字识别带手写板GUI界面 Pytorch代码 含训练模型 (付费资源,如果你觉得这篇博客对你有帮助,欢迎购买支持~)

这篇关于深度学习实战 | 卷积神经网络LeNet手写数字识别(带手写板GUI界面)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677880

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现