深度学习实战 | 卷积神经网络LeNet手写数字识别(带手写板GUI界面)

本文主要是介绍深度学习实战 | 卷积神经网络LeNet手写数字识别(带手写板GUI界面),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在深度学习领域,卷积神经网络(Convolutional Neural Network, CNN)是一种广泛应用于图像识别任务的神经网络结构。LeNet是一种经典的CNN结构,被广泛应用于基础的图像分类任务。本文将介绍如何使用LeNet卷积神经网络实现手写数字识别,并使用Pytorch实现LeNet手写数字识别,使用PyQt5实现手写板GUI界面,使用户能够通过手写板输入数字并进行识别。

请添加图片描述

完整代码下载:Python手写数字识别带手写板GUI界面 Pytorch代码 含训练模型 (付费资源,如果你觉得这篇博客对你有帮助,欢迎购买支持~)

1. LeNet卷积神经网络

LeNet是由Yann LeCun等人于1998年提出的卷积神经网络结构,主要用于手写字符识别。在本文中,我们将使用LeNet结构构建一个用于手写数字识别的神经网络模型。以下是LeNet的基本结构:

请添加图片描述

Layer 1: Convolutional Layer- Input: 28x28x1 (灰度图像)- Filter: 5x5, Stride: 1, Depth: 6- Activation: Sigmoid- Output: 28x28x6Layer 2: Average Pooling Layer- Input: 28x28x6- Pooling: 2x2, Stride: 2- Output: 14x14x6Layer 3: Convolutional Layer- Input: 14x14x6- Filter: 5x5, Stride: 1, Depth: 16- Activation: Sigmoid- Output: 10x10x16Layer 4: Average Pooling Layer- Input: 10x10x16- Pooling: 2x2, Stride: 2- Output: 5x5x16Layer 5: Fully Connected Layer- Input: 5x5x16- Output: 120- Activation: SigmoidLayer 6: Fully Connected Layer- Input: 120- Output: 84- Activation: SigmoidLayer 7: Output Layer- Input: 84- Output: 10 (对应0-9的数字)- Activation: Softmax

2. 手写数字识别实现

使用深度学习框架(例如Pytorch)构建LeNet模型:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.conv1 = nn.Conv2d(1, 6, kernel_size=5)self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2)self.conv2 = nn.Conv2d(6, 16, kernel_size=5)self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = F.sigmoid(self.conv1(x))x = self.pool1(x)x = F.sigmoid(self.conv2(x))x = self.pool2(x)x = x.view(-1, 16 * 5 * 5)x = F.sigmoid(self.fc1(x))x = F.sigmoid(self.fc2(x))x = self.fc3(x)return F.log_softmax(x, dim=1)

并使用手写数字数据集MNIST进行训练。确保正确实现数据预处理和模型训练过程:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from net import Netif __name__ == "__main__":# 设置训练参数batch_size = 64epochs = 140device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 数据集transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform)trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True)# 输出提示信息print("batch_size:", batch_size)print("data_batches:", len(trainloader))print("epochs:", epochs)# 神经网络net = Net().to(device)net.load_state_dict(torch.load('model.pth'))# 损失函数和优化器criterion = nn.NLLLoss()optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)# 训练网络for epoch in range(epochs):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = datainputs, labels = Variable(inputs).to(device), Variable(labels).to(device)# 反向传播优化参数optimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 938 == 937:    # 每轮输出损失值print('[epoch: %d, batches: %d] loss: %.5f' %(epoch + 1, i + 1, running_loss / 2000))running_loss = 0.0torch.save(net.state_dict(), './model.pth')  # 每轮保存模型参数print('Finished Training')

3. 手写板GUI界面开发

模型训练完成后,为了让用户通过手写板输入数字,我们将开发一个简单直观的GUI界面。使用GUI库(例如PyQt5),创建一个窗口,包含一个手写板区域,用户可以在上面写数字。添加一个识别按钮,点击后将手写板上的数字送入LeNet模型进行识别,并在界面上显示识别结果。

以下是PyQt5代码示例:

from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtCore import *
import sysimport torch
from utils import *
from net import Netclass MainWindow(QMainWindow):def __init__(self):super().__init__()self.title = '手写数字识别'self.initUI()def initUI(self):self.setWindowTitle(self.title)self.setMinimumSize(500, 400)self.main_widget = QWidget()self.main_layout = QGridLayout()self.main_widget.setLayout(self.main_layout)self.setCentralWidget(self.main_widget)self.canvas = Canvas()self.canvas.setFixedSize(300,300)self.label = QLabel()self.label.setFixedSize(100,100)self.label.setText('识别结果')self.label.setStyleSheet("font-size:15px;color:red") self.clear_button = QPushButton('清除')self.clear_button.setFixedSize(100,50)self.clear_button.clicked.connect(self.canvas.clear)self.recognize_button = QPushButton('识别')self.recognize_button.setFixedSize(100,50)self.recognize_button.clicked.connect(self.recognize)self.main_layout.addWidget(self.canvas,0,0,3,1)self.main_layout.addWidget(self.label,0,1)self.main_layout.addWidget(self.clear_button,1,1)self.main_layout.addWidget(self.recognize_button,2,1)def recognize(self):self.canvas.recognize()self.label.setText('识别结果: ' + str(self.canvas.recognize()))class Canvas(QLabel):x0=-10; y0=-10; x1=-10; y1=-10def __init__(self):super(Canvas,self).__init__()self.pixmap = QPixmap(300, 300)self.pixmap.fill(Qt.white)self.Color=Qt.blueself.penwidth=10def paintEvent(self,event):painter=QPainter(self.pixmap)painter.setPen(QPen(self.Color,self.penwidth,Qt.SolidLine))painter.drawLine(self.x0,self.y0,self.x1,self.y1)Label_painter=QPainter(self)Label_painter.drawPixmap(2,2,self.pixmap)def mousePressEvent(self, event):self.x1=event.x()self.y1=event.y()def mouseMoveEvent(self, event):self.x0 = self.x1self.y0 = self.y1self.x1 = event.x()self.y1 = event.y()self.update()def clear(self):self.x0=-10; self.y0=-10; self.x1=-10; self.y1=-10self.pixmap.fill(Qt.white)self.update()def recognize(self):arr = pixmap2np(self.pixmap)arr = 255 - arr[:,:,2]arr = clip_image(arr)arr = resize_image(arr)arr = np.expand_dims(arr, axis=0)arr_batch = np.expand_dims(arr, axis=0)tensor = torch.FloatTensor(arr_batch)tensor = (tensor/255 - 0.5) * 2possibles = net(tensor).detach().numpy()result = np.argmax(possibles)return resultif __name__ == '__main__':net = Net()net.load_state_dict(torch.load('model.pth'))app = QApplication(sys.argv)win = MainWindow()win.show()sys.exit(app.exec_())

这个例子中,用户可以在手写板上写数字,点击识别按钮后,程序将手写板上的数字送入LeNet模型进行识别,并在界面上显示识别结果。

通过本文的实践,你可以学到如何使用LeNet卷积神经网络实现手写数字识别,以及如何结合GUI开发一个手写板界面,更直观地进行数字识别交互。希望这篇博客对有所帮助。

完整代码下载:Python手写数字识别带手写板GUI界面 Pytorch代码 含训练模型 (付费资源,如果你觉得这篇博客对你有帮助,欢迎购买支持~)

这篇关于深度学习实战 | 卷积神经网络LeNet手写数字识别(带手写板GUI界面)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677880

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

java字符串数字补齐位数详解

《java字符串数字补齐位数详解》:本文主要介绍java字符串数字补齐位数,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java字符串数字补齐位数一、使用String.format()方法二、Apache Commons Lang库方法三、Java 11+的St

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、