目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码)

本文主要是介绍目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

0. 前言

1. Penn-Fudan数据集介绍

2. Penn-Fudan数据集预处理过程

3. 结果展示

4. 完整代码


0. 前言

按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。

本文以Penn-Fudan数据集预处理为例,说明用于目标检测算法训练的数据集的预处理方法及过程。

因为要给目标检测算法进行训练,需要预先提取出图像中定位及分类相关信息,过程稍微有点复杂,所以单独写作这篇博客专门介绍整个过程。

1. Penn-Fudan数据集介绍

1.1 基础概述

Penn-Fudan行人数据集(Penn-Fudan Pedestrian Detection Dataset)是一个专门用于行人检测任务的小规模图像数据集。这个数据集由宾夕法尼亚大学和复旦大学的研究者共同创建,主要用于学术研究和算法验证。

该数据集包含170张高分辨率的RGB图像,这些图片都是从视频序列中截取的,并且在每幅图像中有0到6个不等的行人目标。每个行人的位置都通过矩形框(mask)进行了精确标注,提供了边界框坐标信息,便于进行目标检测训练和测试。

Penn-Fudan数据集的文件结构如下:

PennFudanPed/
├── Annotation/       #包含每个图像的注释,包含有多少行人及行人位置等信息
│   ├── FudanPed00001.txt
│   ├── FudanPed00002.txt
│   └── ... 
├── PedMasks/       #包含每个行人的掩码图像
│   ├── FudanPed00001_mask.png
│   ├── FudanPed00002_mask.png
│   └── ...       
├── PNGImages/      # 图像文件夹
│   ├── FudanPed00001.png
│   ├── FudanPed00002.png
│   └── ...        
└── readme.txt
1.2 图像内容
  • 场景:图像采集自多种环境,如校园、街道、人行横道等,涵盖了不同光照条件、行人姿态和遮挡情况。
  • 行人数量:总计标注了345个行人的实例,每张图片中至少有一个行人,部分图片中有多个行人。
1.3 标注信息

Penn-Fudan数据集所有图像都按照PASCAL VOC格式进行标注,包括每个行人的精确边界框和像素级分割掩模。

  • 边界框(Bounding Boxes):每个行人实例都有一个矩形边界框,用于表示行人在图像中的位置。
  • 分割掩模(Segmentation Masks):除了边界框之外,还提供了每个行人实例的精细像素级分割标签,这对于训练和评估基于深度学习的语义分割模型非常有用。
1.4 应用示例
  • 模型训练与验证:该数据集常被用于微调预训练的物体检测和实例分割模型,例如Mask R-CNN,以检验其对行人检测及分割任务的适应性。
  • 算法比较:研究者使用Penn-Fudan数据集来对比不同行人检测和分割方法的效果,并以此来改进算法性能。
1.5 获取与使用
  • 资源获取:用户通常需要从官方或相关学术项目网站下载该数据集,数据集中包含了图像文件夹(如“PNGImages”)和相应的XML标注文件。
  • 数据加载:利用工具如`TorchVision`或其他计算机视觉库可以方便地加载和解析这些标注数据,进而进行模型训练和实验。

需要数据集的小伙伴可以留下邮箱。

2. Penn-Fudan数据集预处理过程

首先需要解释下PedMasks中的mask,mask是一个二维矩阵,用于标注图像中的行人:用“0”标注图像背景,用“1”标注“行人1”,“2”标注“行人2”,以此类推……

下面示意图可以更加形象地说明mask:

当然真实mask要达到像素级精度,比上面示意图密集得多。

Penn-Fudan数据集预处理过程可以分为以下几个步骤:

  1. 提取mask中的值mask_id,确认图像中有几个行人,例如上图mask_id = [1, 2];
  2. 按照mask_id把单个mask拆分成多个masks,拆分过程如下图;
  3. 确认masks中的每个行人的位置,即每个ground truth框的[x_min, y_min, x_max, y_max];

3. 结果展示

按上述过程对Penn-Fudan数据集进行预处理,结果如下:

其中绿色框代表行人的ground truth框,红色数字代表行人编号。

4. 完整代码

import os
import numpy as np
from PIL import Image
import cv2class PFdataset():def __init__(self, path):self.path = pathself.imgs = list(sorted(os.listdir(os.path.join(path, 'PNGImages'))))  #图像列表:['FudanPed00001.png', 'FudanPed00002.png'...]self.masks = list(sorted(os.listdir(os.path.join(path, 'PedMasks'))))  #Mask列表:['FudanPed00001_mask.png', 'FudanPed00002_mask.png'...]def __getitem__(self, item):img_path = os.path.join(self.path, 'PNGImages', self.imgs[item])  #输出单个图像的地址:Penn-Fudan\PNGImages\FudanPed00xxx.pngmask_path = os.path.join(self.path, 'PedMasks', self.masks[item])  #输出单个mask的地址:Penn-Fudan\PedMasks\PennPed00xxx_mask.pngimg = Image.open(img_path).convert('RGB')   #例 <PIL.Image.Image image mode=RGB size=559x536 at 0x2103A5ED790> , 可以用.show()看到图像, 可以用 numpy.array()看到图像数据mask = np.array(Image.open(mask_path))  #例  <PIL.PngImagePlugin.PngImageFile image mode=L size=530x410 at 0x214FACC83D0>mask_id = np.unique(mask) #提取mask的编码,例:编码有[0,1,2]。0代表背景,1代表人物1,2代表人物2mask_id = mask_id[1:]  #0是背景,进行切片,编码仅剩[1,2]masks = mask == mask_id[:,None,None]  #把不同对象的mask提取出来,mask_id[:,None,None]相当于array的升维gt_boxs = []  #groundtruth框的坐标值listfor i in range(len(mask_id)):box = np.where(masks[i])xmin = np.min(box[1])xmax = np.max(box[1])ymin = np.min(box[0])ymax = np.max(box[0])gt_boxs.append([xmin, ymin, xmax, ymax, mask_id[i]])#使用cv2画框并且标注序号img_cv2 = cv2.imread(img_path)for [xmin, ymin, xmax, ymax, mask_id] in gt_boxs:cv2.rectangle(img_cv2,(xmin,ymin),(xmax,ymax),(0, 255, 0), 2)text = '%s'%mask_idfont = cv2.FONT_HERSHEY_SIMPLEXfont_scale = 1color = (0, 0, 255)  # 蓝色文本thickness = 2text_size, baseline = cv2.getTextSize(text, font, font_scale, thickness)text_origin = (xmin,ymin + baseline*3)# 在矩形框上方写入文本cv2.putText(img_cv2, text, text_origin, font, font_scale, color, thickness, cv2.LINE_AA)cv2.imshow('gt_box',img_cv2)cv2.imwrite('Penn-Fudan/output/%s.jpg'%item, img_cv2)dataset = PFdataset('Penn-Fudan')
dataset[1]

这篇关于目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/663965

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创