【MATLAB源码-第126期】基于matlab的樽海鞘算法(SSA)机器人栅格路径规划,输出做短路径图和适应度曲线。

本文主要是介绍【MATLAB源码-第126期】基于matlab的樽海鞘算法(SSA)机器人栅格路径规划,输出做短路径图和适应度曲线。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

操作环境:

MATLAB 2022a

1、算法描述


樽海鞘算法(Salp Swarm Algorithm, SSA)
樽海鞘算法是一种基于群体智能的优化算法,它通过模拟樽海鞘在海洋中的社会行为来解决优化问题。这种算法的设计灵感来源于樽海鞘的群体行为,尤其是它们在觅食时的协同行动方式。

背景
樽海鞘是一类海洋生物,属于脊索动物门。它们以群体的形式生活在海洋中,通过协调的方式进行觅食和移动。在自然界中,樽海鞘群体的行为表现出极高的组织性和效率,这使得它们成为算法设计的良好借鉴对象。

算法灵感
樽海鞘算法的设计灵感主要来自于两个方面:一是樽海鞘的群体结构,二是它们的觅食行为。在自然界中,樽海鞘群体中的个体通过协作与信息共享,共同寻找食物资源,这种行为在算法中被抽象为寻找最优解的过程。

算法结构
樽海鞘算法将群体分为两部分:领头者和追随者。领头者负责引导整个群体,而追随者则根据领头者和其他追随者的位置来调整自己的位置。
1. 领头者(Leader)
领头者在算法中代表当前找到的最优解。它的位置是根据问题的目标函数来更新的。在每次迭代中,领头者根据目标函数的反馈调整自己的位置,引导群体向着更优的区域移动。
2. 追随者(Followers)
追随者的任务是探索解空间,以寻找可能的更优解。它们的位置更新依赖于领头者的位置以及其他追随者的位置。这种机制确保了群体能够在广阔的解空间中进行有效搜索。

位置更新规则
樽海鞘算法中的关键是位置更新规则。这个规则决定了算法如何探索解空间,并最终找到最优解。
1. 领头者更新规则:领头者根据目标函数的梯度或者其他启发式信息更新其位置。这反映了在实际觅食中,樽海鞘会根据环境的变化调整移动方向。
2. **追随者更新规则:追随者的位置更新则更加复杂,它不仅依赖于领头者的位置,也受到其他追随者位置的影响。这种更新机制模拟了樽海鞘群体中的信息传递和个体间的相互作用。

觅食行为的模拟
樽海鞘算法通过模拟樽海鞘的觅食行为来搜索最优解。在自然界中,樽海鞘群体在寻找食物时会表现出高度的协同和效率,这在算法中体现为快速而有效地搜索解空间。
1. 探索与开发:算法平衡了探索(Exploration)和开发(Exploitation)两个方面。探索指的是搜索新的区域,而开发则是在已知的有希望区域进行深入搜索。
2. 动态调整:樽海鞘算法能够根据当前搜索情况动态调整探索与开发的比重,这使得算法在不同的搜索阶段都能保持高效。

应用范围
樽海鞘算法由于其独特的优化机制和高效的搜索能力,已被广泛应用于多个领域,如工程优化、路径规划、资源分配、机器学习等。

算法优势
1. 高效的全局搜索能力:算法能够在较大的解空间中有效地搜索全局最优解。
2. 良好的适应性:樽海鞘算法可以适应各种类型的优化问题。
3. 简洁易实现:相对于其他优化算法,樽海鞘算法在实现上更为简洁直观。

面临的挑战
尽管樽海鞘算法在多个方面表现出色,但在实际应用中仍面临一些挑战,如局部最优解的问题、参数调整的敏感性等。
未来发展
未来,随着对樽海鞘算法的深入研究和应用领域的拓展,其在解决复杂优化问题中的作用将越来越大。同时,结合其他优化算法的优点,对樽海鞘算法进行改进和优化也是研究的重要方向。
结论
樽海鞘算法作为一种新兴的群体智能优化方法,其在解决实际问题方面展现的潜力令人瞩目。随着技术的不断发展和完善,它将在各种优化问题中发挥更加重要的作用。

2、仿真结果演示

3、关键代码展示

l=略

4、MATLAB 源码获取

      V

点击下方名片

这篇关于【MATLAB源码-第126期】基于matlab的樽海鞘算法(SSA)机器人栅格路径规划,输出做短路径图和适应度曲线。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/646798

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费