描绘未知:数据缺乏场景的缺陷检测方案

2024-01-25 11:20

本文主要是介绍描绘未知:数据缺乏场景的缺陷检测方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

了解更多方案内容,欢迎您访问官网:neuro-T | 友思特 机器视觉 光电检测;或联系销售经理:18124130753

导读

深度学习模型帮助工业生产实现更加精确的缺陷检测,但其准确性可能受制于数据样本的数量。友思特 Neuro-T 视觉平台克服了数据缺乏状况的困难,通过零代码设置GAN模型无监督学习模型,轻松实现缺陷图像的标注、绘制和导出。

工业应用中存在较多的缺陷检测需求。针对缺陷检测需求,常见的解决方案有两种:

  1. 基于目标正常图像数据的模板匹配;

  2. 训练深度学习模型检测目标缺陷。

其中,第2种方式具有更强的鲁棒性和泛化能力。然而由于深度学习模型的准确率跟数据量的大小挂钩,深度学习缺陷检测方案面临着缺乏足够的缺陷样本进行模型训练的问题。

友思特推出 Neuro-T 机器视觉软件平台,通过GAN无监督学习模型两种不同的手段,以两种不同的方式形成数据缺乏场景的缺陷检测方案

友思特Neuro-T支持的深度学习模型类型

友思特 Neuro-T 支持八种不同的深度学习模型。

其中,GAN通过少量缺陷样本,训练缺陷生成模型并生成大量缺陷图像,从而解决缺陷数据缺乏的问题;无监督学习模型中的异常分类异常分割,只需用大量正常的图像数据和少量的缺陷图像进行训练,即可输出检测异常图像的深度学习模型。

有监督学习模型

  • 模型训练数据包括输入图像的特征标签/目标值

  • 训练过程中,模型尝试通过特征和标签之间的联系来学习如何预测/分类。

无监督学习模型

  • 模型训练数据只包含输入图像的特征,无标签/目标值;

  • 模型尝试发现数据中的模型或特征关系,而非预测特定的输出。

监督学习

分类

图片

将图像分类成不同的类别或OK/NG组别

实例

分割

图片

分析图像中检测到的物体形状并圈选

目标

检测

图片

检测图像中物体的类别、数量并定位

OCR

字符

识别

图片

检测和识别图像中的字母、数字或符号

旋转

图片

旋转图像至合适的方位

GAN

对抗生成网络

图片

学习图像中的缺陷区域并生成虚拟缺陷

无监督学习

异常

分类

图片

在大量正常图像和少量缺陷图像上训练以检测异常图像进行分类

异常

分割

图片

在大量正常图像和少量缺陷图像上训练以检测异常图像并定位缺陷位置

GAN模型

生成对抗网络 (Generative Adversarial Network, GAN) 是一种深度学习模型,由生成器 (Generator) 和判别器 (Discriminator) 组成。

生成器网络以随机噪声为输入,通过层层映射和转换逐渐生成逼真的数据样本。判别器网络则被训练用于区分生成器产生的样本与真实样本。两部分通过对抗训练的方式相互博弈,学习数据的分布,使得生成器可以生成逼真的数据样本,而判别器则可以对真实样本和生成的样本进行有效区分。

生成器的目标是最大化判别器无法区分生成样本和真实样本的概率。而判别器的目标是最小化其错误率,即尽可能准确地区分生成样本和真实样本。通过反复迭代优化,生成器和判别器逐渐互相提高,并最终达到一种动态平衡状态。

GAN模型广泛应用于文本、图像、音视频数据生成等场景。

Neuro-T GAN模型生成缺陷图像操作步骤

01 训练GAN模型

1.1.1 新建项目

图片

1.1.2 新建数据集

图片

1.1.3 导入图像数据

图片

1.2.1 创建标签集 

图片

1.2.2 选择模型类型(GAN)

图片

1.3.1 标注数据

图片

1.3.2 完成标注

图片

可以使用涂刷的方式选中缺陷区域

也可以用画笔绘制任意多边形圈选缺陷区域

1.4.1 划分训练集/测试集

图片

1.4.2 缺陷图像/正常图像

图片

缺陷图像设置为训练集,将正常图像设置为测试集

1.5.1 输入训练模型名称

图片

1.5.2 训练生成GAN模型

图片

1.5.3 查看模型结果

图片

02 创建缺陷图像

2.1.1 进入生成中心(Generation Center)

图片

2.1.2 新建任务

图片

2.2.1 导入正常图像

图片

2.2.2 加载GAN模型

图片

用于创建缺陷的图像数据必须跟用于训练GAN模型的数据对应,后续将用这些正常图像生成缺陷图像。

①绘制生成缺陷:自定义模式Custom mode

2.3.1① 选择缺陷生成类型

图片

2.3.2① 绘制缺陷

图片

2.3.3① 完成绘制

图片

2.3.4① 准备生成

图片

2.3.5① 生成缺陷图像

图片

应用于比较直观的缺陷,可以使用先前训练的缺陷形状(Stamp)绘制缺陷,也可以使用画刷工具(Brush)自由绘制缺陷

②绘制生成缺陷:随机模式Random mode

2.3.1② 选择缺陷生成类型

图片

2.3.2② 设置缺陷数

图片

2.3.3② 生成缺陷图像

图片

2.3.4② 得到缺陷图像

图片

2.3.5② 导出图像数据

图片

应用于比较抽象的缺陷批量缺陷图像的生成,可一键实现在所有正常图像上绘制缺陷得到缺陷图像,软件界面可查看生成的批量缺陷图像并导出。

Neuro-T无监督学习模型

输出异常分类or检测模型操作步骤

(1)与使用Neuro-T训练其他深度学习模型一样的步骤,新建项目 → 新建数据集 → 导入图像数据 → 新建标签集 → 选择标签集对应的深度学习模型类型。

(2)对于异常分类模型:只需类比分类模型,给数据添加正常or异常的标签;对于异常分割模型:给数据添加正常or异常的标签,进一步地,对于异常的图像数据,需要圈选or涂选出异常区域。

(3)训练模型,查看模型检测结果,可以通过设置敏感度阈值(Sensitivity Threshold)来过滤检测出的图像异常部分,从而满足实际的应用需求。

友思特Neuro-T应用案例

1. 制造业

图片

电池缺陷检测

钢材表面缺陷检测

2. 医疗业

图片

胸部CT病灶检测

图片

腹部超声异常检测

这篇关于描绘未知:数据缺乏场景的缺陷检测方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/643105

相关文章

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密