本文主要是介绍【愚公系列】2023年12月 Java教学课程 213-ElasticSearch(数据聚合、数据补全、数据同步),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
🏆 作者简介,愚公搬代码
🏆《头衔》:华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主,腾讯云内容共创官,掘金优秀博主,51CTO博客专家等。
🏆《近期荣誉》:2023年华为云十佳博主,2022年CSDN博客之星TOP2,2022年华为云十佳博主等。
🏆《博客内容》:.NET、Java、Python、Go、Node、前端、IOS、Android、鸿蒙、Linux、物联网、网络安全、大数据、人工智能、U3D游戏、小程序等相关领域知识。
🏆🎉欢迎 👍点赞✍评论⭐收藏
文章目录
- 🚀一、数据聚合
- 🔎1.聚合的种类
- 🔎2.DSL实现聚合
- 🦋2.1 Bucket聚合语法
- 🦋2.2 聚合结果排序
- 🦋2.3 限定聚合范围
- 🦋2.4 Metric聚合语法
- 🔎3.RestAPI实现聚合
- 🦋3.1 API语法
- 🦋3.2 业务需求
- 🦋3.3 业务实现
- 🚀二、数据补全
- 🔎1.拼音分词器
- 🔎2.自定义分词器
- 🔎3.自动补全查询
- 🔎4.实现酒店搜索框自动补全
- 🦋4.1 修改酒店映射结构
- 🦋4.2 修改HotelDoc实体
- 🦋4.3 重新导入
- 🦋4.4 自动补全查询的JavaAPI
- 🦋4.5 实现搜索框自动补全
- 🚀三、数据同步
- 🔎1.思路分析
- 🦋1.1 同步调用
- 🦋1.2 异步通知
- 🦋1.3 监听binlog
- 🦋1.4 选择
- 🔎2.实现数据同步
- 🦋2.1 思路
- 🦋2.2 运行项目
- 🦋2.3 声明交换机、队列
- ☀️2.3.1 引入依赖
- ☀️2.3.2 声明队列交换机名称
- ☀️2.3.3 声明队列交换机
- 🦋2.4 发送MQ消息
- 🦋2.5 接收MQ消息
- 🚀感谢:给读者的一封信
🚀一、数据聚合
聚合(aggregations) 可以让我们极其方便的实现对数据的统计、分析、运算。例如:
-
简化数据:数据集中可能包含大量的细节和信息,通过聚合可以将其简化为更容易理解的摘要信息,从而使得数据集更易于分析和理解。
-
发现数据规律:通过聚合可以对数据进行分组、汇总和统计,从而可以更加容易地找到数据的规律,例如最常出现的数值、某些数据的分布频率、数据的平均值或中位数等。
-
提高数据可视化的效果:聚合可以提供更简单、更直观的方式来呈现数据。例如,将数据按照日期、地理位置等维度分组后,可以将其用柱状图、饼图等方式进行可视化,从而更加直观地展现数据的分类和关系。
-
支持实时数据分析:聚合可以高效地处理大量的实时数据,从而支持实时数据分析和监控,例如实时监控用户的行为、实时监控服务器的性能等。
-
优化数据存储和查询:通过事先进行聚合,可以将数据存储为摘要信息,从而减少数据存储的空间需要,并且加速查询速度,从而提高数据存储和处理的效率。
🔎1.聚合的种类
类型 | 描述 |
---|---|
桶聚合 | 将文档划分为不同的桶中,然后对每个桶进行聚合。常见的桶聚合包括:terms、date_histogram、histogram、range、geo_distance等。 |
指标聚合 | 指标聚合是对文档中的指标数据进行计算的聚合,例如计算平均值、最大值、最小值、总和、标准差等。常见的指标聚合包括:avg、max、min、sum、cardinality等。 |
嵌套聚合 | 在桶聚合或指标聚合中嵌套另一个聚合来进行更复杂的计算。常见的嵌套聚合包括:top_hits、percentiles、scripted_metric等。 |
🔎2.DSL实现聚合
🦋2.1 Bucket聚合语法
语法如下:
GET /hotel/_search
{"size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果"aggs": { // 定义聚合"brandAgg": { //给聚合起个名字"terms": { // 聚合的类型,按照品牌值聚合,所以选择term"field": "brand", // 参与聚合的字段"size": 20 // 希望获取的聚合结果数量}}}
}
结果如图:
🦋2.2 聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search
{"size": 0, "aggs": {"brandAgg": {"terms": {"field": "brand","order": {"_count": "asc" // 按照_count升序排列},"size": 20}}}
}
🦋2.3 限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search
{"query": {"range": {"price": {"lte": 200 // 只对200元以下的文档聚合}}}, "size": 0, "aggs": {"brandAgg": {"terms": {"field": "brand","size": 20}}}
}
这次,聚合得到的品牌明显变少了:
🦋2.4 Metric聚合语法
对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。
这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
语法如下:
GET /hotel/_search
{"size": 0, "aggs": {"brandAgg": { "terms": { "field": "brand", "size": 20},"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算"score_stats": { // 聚合名称"stats": { // 聚合类型,这里stats可以计算min、max、avg等"field": "score" // 聚合字段,这里是score}}}}}
}
我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:
🔎3.RestAPI实现聚合
下面案例接上一篇文章,继续讲数据聚合、数据同步、数据补全
🦋3.1 API语法
聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。
聚合条件的语法:
聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:
🦋3.2 业务需求
🦋3.3 业务实现
在HotelController
中添加一个方法,遵循下面的要求:
- 请求方式:
POST
- 请求路径:
/hotel/filters
- 请求参数:
RequestParams
,与搜索文档的参数一致 - 返回值类型:
Map<String, List<String>>
代码:
@PostMapping("filters")
public Map<String, List<String>> getFilters(@RequestBody RequestParams params){return hotelService.getFilters(params);
}
定义新方法:
Map<String, List<String>> filters(RequestParams params);
实现该方法:
@Override
public Map<String, List<String>> filters(RequestParams params) {try {// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSL// 2.1.querybuildBasicQuery(params, request);// 2.2.设置sizerequest.source().size(0);// 2.3.聚合buildAggregation(request);// 3.发出请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果Map<String, List<String>> result = new HashMap<>();Aggregations aggregations = response.getAggregations();// 4.1.根据品牌名称,获取品牌结果List<String> brandList = getAggByName(aggregations, "brandAgg");result.put("品牌", brandList);// 4.2.根据品牌名称,获取品牌结果List<String> cityList = getAggByName(aggregations, "cityAgg");result.put("城市", cityList);// 4.3.根据品牌名称,获取品牌结果List<String> starList = getAggByName(aggregations, "starAgg");result.put("星级", starList);return result;} catch (IOException e) {throw new RuntimeException(e);}
}private void buildAggregation(SearchRequest request) {request.source().aggregation(AggregationBuilders.terms("brandAgg").field("brand").size(100));request.source().aggregation(AggregationBuilders.terms("cityAgg").field("city").size(100));request.source().aggregation(AggregationBuilders.terms("starAgg").field("starName").size(100));
}private List<String> getAggByName(Aggregations aggregations, String aggName) {// 4.1.根据聚合名称获取聚合结果Terms brandTerms = aggregations.get(aggName);// 4.2.获取bucketsList<? extends Terms.Bucket> buckets = brandTerms.getBuckets();// 4.3.遍历List<String> brandList = new ArrayList<>();for (Terms.Bucket bucket : buckets) {// 4.4.获取keyString key = bucket.getKeyAsString();brandList.add(key);}return brandList;
}
🚀二、数据补全
当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:
🔎1.拼音分词器
要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin
安装方式与IK分词器一样,测试用法如下:
POST /_analyze
{"text": "如家酒店还不错","analyzer": "pinyin"
}
结果:
🔎2.自定义分词器
默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。
elasticsearch中分词器(analyzer)的组成包含三部分:
- character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
- tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
- tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
文档分词时会依次由这三部分来处理文档:
声明自定义分词器的语法如下:
PUT /test
{"settings": {"analysis": {"analyzer": { // 自定义分词器"my_analyzer": { // 分词器名称"tokenizer": "ik_max_word","filter": "py"}},"filter": { // 自定义tokenizer filter"py": { // 过滤器名称"type": "pinyin", // 过滤器类型,这里是pinyin"keep_full_pinyin": false, //解决全分为单个字的问题"keep_joined_full_pinyin": true, //全拼"keep_original": true, //是否保留中文"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"name": {"type": "text","analyzer": "my_analyzer","search_analyzer": "ik_smart" //拼音分词器适合在创建倒排索引时使用,但不能在搜索的时候使用。}}}
}
测试:
🔎3.自动补全查询
elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:
- 参与补全查询的字段必须是completion类型。
- 字段的内容一般是用来补全的多个词条形成的数组。
比如,一个这样的索引库:
// 创建索引库
PUT test
{"mappings": {"properties": {"title":{"type": "completion"}}}
}
然后插入下面的数据:
// 示例数据
POST test/_doc
{"title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{"title": ["SK-II", "PITERA"]
}
POST test/_doc
{"title": ["Nintendo", "switch"]
}
查询的DSL语句如下:
// 自动补全查询
GET /test/_search
{"suggest": { //查询类型,用suggest "title_suggest": { //给你的suggest查询起个名"text": "s", // 用户输入的关键字"completion": {"field": "title", // 补全查询的字段"skip_duplicates": true, // 跳过重复的"size": 10 // 获取前10条结果}}}
}
🔎4.实现酒店搜索框自动补全
我们需要做的事情包括:
-
修改hotel索引库结构,设置自定义拼音分词器
-
修改索引库的name、all字段,使用自定义分词器
-
索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器
-
给HotelDoc类添加suggestion字段,内容包含brand、business
-
重新导入数据到hotel库
🦋4.1 修改酒店映射结构
代码如下:
PUT /hotel
{"settings": {"analysis": {"analyzer": {"text_anlyzer": { //定义第一个分词器"tokenizer": "ik_max_word", //切割用ik_max"filter": "py" //转换用拼音},"completion_analyzer": { //定义第二个分词器,用于自动补全,不分词,直接转拼音"tokenizer": "keyword", //分词用keyword,因为参与自动补全的是一个个词条,这些词条放在数组当中,本身就是个词条"filter": "py"}},"filter": { //定义上面的拼音filter"py": {"type": "pinyin","keep_full_pinyin": false,"keep_joined_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"id":{"type": "keyword"},"name":{"type": "text","analyzer": "text_anlyzer", //用来创建倒排索引时分词"search_analyzer": "ik_smart", //用来全文检索"copy_to": "all"},"address":{"type": "keyword","index": false},"price":{"type": "integer"},"score":{"type": "integer"},"brand":{"type": "keyword","copy_to": "all"},"city":{"type": "keyword"},"starName":{"type": "keyword"},"business":{"type": "keyword","copy_to": "all"},"location":{"type": "geo_point"},"pic":{"type": "keyword","index": false},"all":{"type": "text","analyzer": "text_anlyzer", //倒排索引分词"search_analyzer": "ik_smart" //搜索分词},"suggestion":{ //新加这个字段,用来做自动补全"type": "completion", //类型为completion"analyzer": "completion_analyzer" //不分词,直接转拼音}}}
}
🦋4.2 修改HotelDoc实体
HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。
因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>
,然后将brand、city、business等信息放到里面。
代码如下:
package cn.itcast.hotel.pojo;import lombok.Data;
import lombok.NoArgsConstructor;import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;@Data
@NoArgsConstructor
public class HotelDoc {private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String location;private String pic;private Object distance;private Boolean isAD;private List<String> suggestion;public HotelDoc(Hotel hotel) {this.id = hotel.getId();this.name = hotel.getName();this.address = hotel.getAddress();this.price = hotel.getPrice();this.score = hotel.getScore();this.brand = hotel.getBrand();this.city = hotel.getCity();this.starName = hotel.getStarName();this.business = hotel.getBusiness();this.location = hotel.getLatitude() + ", " + hotel.getLongitude();this.pic = hotel.getPic();// 组装suggestionif(this.business.contains("/")){// business有多个值,需要切割String[] arr = this.business.split("/");// 添加元素this.suggestion = new ArrayList<>();this.suggestion.add(this.brand);Collections.addAll(this.suggestion, arr);}else {this.suggestion = Arrays.asList(this.brand, this.business);}}
}
🦋4.3 重新导入
重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:
🦋4.4 自动补全查询的JavaAPI
之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:
而自动补全的结果也比较特殊,解析的代码如下:
🦋4.5 实现搜索框自动补全
查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:
返回值是补全词条的集合,类型为List<String>
1)在cn.itcast.hotel.web
包下的HotelController
中添加新接口,接收新的请求:
@GetMapping("suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix) {return hotelService.getSuggestions(prefix);
}
2)在cn.itcast.hotel.service
包下的IhotelService
中添加方法:
List<String> getSuggestions(String prefix);
3)在cn.itcast.hotel.service.impl.HotelService
中实现该方法:
@Override
public List<String> getSuggestions(String prefix) {try {// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSLrequest.source().suggest(new SuggestBuilder().addSuggestion("suggestions",SuggestBuilders.completionSuggestion("suggestion").prefix(prefix).skipDuplicates(true).size(10)));// 3.发起请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果Suggest suggest = response.getSuggest();// 4.1.根据补全查询名称,获取补全结果CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");// 4.2.获取optionsList<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();// 4.3.遍历List<String> list = new ArrayList<>(options.size());for (CompletionSuggestion.Entry.Option option : options) {String text = option.getText().toString();list.add(text);}return list;} catch (IOException e) {throw new RuntimeException(e);}
}
🚀三、数据同步
elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步。
🔎1.思路分析
🦋1.1 同步调用
基本步骤如下:
- hotel-demo对外提供接口,用来修改elasticsearch中的数据
- 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,
🦋1.2 异步通知
流程如下:
- hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
- hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改
🦋1.3 监听binlog
流程如下:
- 给mysql开启binlog功能
- mysql完成增、删、改操作都会记录在binlog中
- hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容
🦋1.4 选择
方式一:同步调用
- 优点:实现简单,粗暴
- 缺点:业务耦合度高
方式二:异步通知
- 优点:低耦合,实现难度一般
- 缺点:依赖mq的可靠性
方式三:监听binlog
- 优点:完全解除服务间耦合
- 缺点:开启binlog增加数据库负担、实现复杂度高
🔎2.实现数据同步
🦋2.1 思路
步骤:
-
启动hotel-admin项目并测试酒店数据的CRUD
-
声明exchange、queue、RoutingKey
-
在hotel-admin中的增、删、改业务中完成消息发送
-
在hotel-demo中完成消息监听,并更新elasticsearch中数据
-
启动并测试数据同步功能
🦋2.2 运行项目
运行后,访问 http://localhost:8099
其中包含了酒店的CRUD功能:
🦋2.3 声明交换机、队列
MQ结构如图:
☀️2.3.1 引入依赖
在hotel-admin、hotel-demo中引入rabbitmq的依赖:
<!--amqp-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
☀️2.3.2 声明队列交换机名称
在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts
包下新建一个类MqConstants
:
package cn.itcast.hotel.constatnts;public class MqConstants {/*** 交换机*/public final static String HOTEL_EXCHANGE = "hotel.topic";/*** 监听新增和修改的队列*/public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";/*** 监听删除的队列*/public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";/*** 新增或修改的RoutingKey*/public final static String HOTEL_INSERT_KEY = "hotel.insert";/*** 删除的RoutingKey*/public final static String HOTEL_DELETE_KEY = "hotel.delete";
}
☀️2.3.3 声明队列交换机
在hotel-demo中,定义配置类,声明队列、交换机:
package cn.itcast.hotel.config;import cn.itcast.hotel.constants.MqConstants;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.core.TopicExchange;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class MqConfig {@Beanpublic TopicExchange topicExchange(){return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);}@Beanpublic Queue insertQueue(){return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);}@Beanpublic Queue deleteQueue(){return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);}@Beanpublic Binding insertQueueBinding(){return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);}@Beanpublic Binding deleteQueueBinding(){return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);}
}
🦋2.4 发送MQ消息
在hotel-admin中的增、删、改业务中分别发送MQ消息:
🦋2.5 接收MQ消息
hotel-demo接收到MQ消息要做的事情包括:
- 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
- 删除消息:根据传递的hotel的id删除索引库中的一条数据
1)首先在hotel-demo的cn.itcast.hotel.service
包下的IHotelService
中新增新增、删除业务
void deleteById(Long id);void insertById(Long id);
2)给hotel-demo中的cn.itcast.hotel.service.impl
包下的HotelService中实现业务:
@Override
public void deleteById(Long id) {try {// 1.准备RequestDeleteRequest request = new DeleteRequest("hotel", id.toString());// 2.发送请求client.delete(request, RequestOptions.DEFAULT);} catch (IOException e) {throw new RuntimeException(e);}
}@Override
public void insertById(Long id) {try {// 0.根据id查询酒店数据Hotel hotel = getById(id);// 转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 1.准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());// 2.准备Json文档request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);// 3.发送请求client.index(request, RequestOptions.DEFAULT);} catch (IOException e) {throw new RuntimeException(e);}
}
3)编写监听器
在hotel-demo中的cn.itcast.hotel.mq
包新增一个类:
package cn.itcast.hotel.mq;import cn.itcast.hotel.constants.MqConstants;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;@Component
public class HotelListener {@Autowiredprivate IHotelService hotelService;/*** 监听酒店新增或修改的业务* @param id 酒店id*/@RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)public void listenHotelInsertOrUpdate(Long id){hotelService.insertById(id);}/*** 监听酒店删除的业务* @param id 酒店id*/@RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)public void listenHotelDelete(Long id){hotelService.deleteById(id);}
}
🚀感谢:给读者的一封信
亲爱的读者,
我在这篇文章中投入了大量的心血和时间,希望为您提供有价值的内容。这篇文章包含了深入的研究和个人经验,我相信这些信息对您非常有帮助。
如果您觉得这篇文章对您有所帮助,我诚恳地请求您考虑赞赏1元钱的支持。这个金额不会对您的财务状况造成负担,但它会对我继续创作高质量的内容产生积极的影响。
我之所以写这篇文章,是因为我热爱分享有用的知识和见解。您的支持将帮助我继续这个使命,也鼓励我花更多的时间和精力创作更多有价值的内容。
如果您愿意支持我的创作,请扫描下面二维码,您的支持将不胜感激。同时,如果您有任何反馈或建议,也欢迎与我分享。
再次感谢您的阅读和支持!
最诚挚的问候, “愚公搬代码”
这篇关于【愚公系列】2023年12月 Java教学课程 213-ElasticSearch(数据聚合、数据补全、数据同步)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!