25文章解读与程序——中国电机工程学报EI\CSCD\北大核心《多源动态最优潮流的分布鲁棒优化方法》已提供下载资源

本文主要是介绍25文章解读与程序——中国电机工程学报EI\CSCD\北大核心《多源动态最优潮流的分布鲁棒优化方法》已提供下载资源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

25号资源-源程序:论文可在知网下载《多源动态最优潮流的分布鲁棒优化方法》本人博客有解读资源-CSDN文库icon-default.png?t=N7T8https://download.csdn.net/download/LIANG674027206/88753735

👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆

可参考论文:

多源动态最优潮流的分布鲁棒优化方法_竺如洁

A__state-independent linear power flow model with accurate__estimation of voltage magnitude

2019-(竺如洁)Wasserstein Metric Based Distributionally Robust  Approximate Framework For Unit

摘要:针对大规模清洁能源接入电网引起的系统鲁棒性和经 济性协调问题,提出含风–光–水–火多种能源的分布鲁棒动 态最优潮流模型。采用分布鲁棒优化方法将风光不确定性描 述为包含概率分布信息的模糊不确定集。将模糊不确定集构 造为一个以风光预测误差经验分布为中心,以 Wasserstein 距离为半径的 Wasserstein 球。在满足风光预测误差服从模 糊不确定集中极端概率分布情况下最小化运行费用。由于梯 级水电厂模型为混合整数模型,为了提高计算效率,将交流 潮流近似为解耦线性潮流。最后,某 703 节点实际电力系统的仿真结果表明,所提方法可以通过控制样本大小和 Wasserstein 半径置信度的方法有效平衡系统的鲁棒性与经济性。

这段摘要描述了一种解决清洁能源大规模接入电网时所引起的系统鲁棒性和经济性协调问题的方法。以下是对摘要中各部分的解读:

  1. 问题描述:

    • 背景: 随着大规模清洁能源(风、光、水、火等)接入电网,引发了系统鲁棒性和经济性协调的问题。
    • 目标: 提出一种分布鲁棒动态最优潮流模型,旨在有效解决这些问题。
  2. 建模方法:

    • 多种能源: 模型考虑了多种能源,包括风能、光能、水能和火能。
    • 分布鲁棒优化: 使用分布鲁棒优化方法,将风光不确定性建模为包含概率分布信息的模糊不确定集。
    • 模糊不确定集构造: 将模糊不确定集构造为以风光预测误差经验分布为中心,以Wasserstein距离为半径的Wasserstein球。
  3. 优化目标和约束:

    • 在满足风光预测误差服从模糊不确定集中极端概率分布情况下,最小化系统运行费用。
  4. 模型优化和计算效率提升:

    • 混合整数模型: 由于梯级水电厂模型为混合整数模型,可能涉及离散决策变量。
    • 近似交流潮流: 为了提高计算效率,将交流潮流近似为解耦线性潮流。
  5. 仿真结果验证:

    • 在某703节点实际电力系统上进行了仿真,以验证所提出方法的有效性。
    • 结果表明,通过控制样本大小和Wasserstein半径置信度,可以有效平衡系统的鲁棒性与经济性。

总体而言,该方法结合了多种清洁能源,采用分布鲁棒优化方法,通过模糊不确定集的建模以及Wasserstein球的构造,以最小化运行费用为目标,有效解决了清洁能源接入电网时的系统鲁棒性和经济性协调问题。通过对梯级水电厂模型的合理处理,还提高了计算效率。

部分代码展示:

clc,clear
close all
tic
%% 导入ieee118节点网络
caseName = case118;
%% 参数
iv = 65; %光伏接入节点
iw = 25; %风电接入节点
is = [31;54;80]; %水电接入节点
ih = [10;12;26;46;49;59;61;66;80;87;89;100;103;111]; %火电接入节点
Horizon = 24;
nbus = size(caseName.bus, 1);
K=5;
ngen=14;
nv = 1;
nw = 1;
ns=3;
L_t=[1 0.97 0.96 0.95 0.96 0.98 0.99 1.02 1.05 1.08 1.1 1.12 1.09 1.08 1.07 1.06 1.08 1.1 1.12 1.13 1.1 1.08 1.04 1.01];%时序性负荷系数
L_Horizon=repmat(L_t,nbus,1).*repmat(caseName.bus(:,3),1,Horizon);
load fljl;
load gfjl;
waw=100.*fljl(1:K,:);
wav=10.*gfjl(1:K,:);
wws=max(waw);%风电上限
wwx=min(waw);%风电下限
wvs=max(wav);%光伏上限
wvx=min(wav);%光伏下限
dg=ones(ngen,1);%火电机组调节误差的调节费用
%计算参数ee
muw=mean(waw);
muv=mean(wav);
ee1=newton1(muw,0.95,K,waw);
ee2=newton1(muv,0.95,K,wav);
% syms rho;
% lina=0;
% for ii=1:K
%     lina=lina+exp(rho*(norm(waw(ii,:)-muw))^2);
% end
% Dd=2*(1/2/rho*(1+log(1/K*lina)))^0.5;%电价
price=[0.3177.*ones(1,6),0.6062.*ones(1,2),0.8948.*ones(1,3),0.6062.*ones(1,1),0.3177.*ones(1,1),0.6062.*ones(1,1),0.8948.*ones(1,7),0.6062.*ones(1,2),0.3177.*ones(1,1)];%电价
%% 决策变量
x_theta = sdpvar(nbus, Horizon,'full');%网络角度
V = sdpvar(nbus, Horizon,'full');%网络节点电压
x_P_h = sdpvar(ngen, Horizon,'full');%风光调整前火电
x_P_s = sdpvar(ns, Horizon,'full');%风光调整前水电
% x_P_hz = sdpvar(ngen, Horizon,'full');
% x_P_sz = sdpvar(ns, Horizon,'full');
x_P_w = sdpvar(nw, Horizon,'full');
x_P_v = sdpvar(nv, Horizon,'full');
ww = sdpvar(1,Horizon,'full');%风力偏差
wp = sdpvar(1,Horizon,'full');%光伏偏差
wwp = sdpvar(1,Horizon,'full');%风光总偏差alfah = sdpvar(ngen,Horizon,'full');%火电机组参与因子
alfas = sdpvar(ns,Horizon,'full');%水电机组参与因子
rgmax = 50.*ones(ngen, Horizon);%火电旋转备用容量
rgmin = 10.*ones(ngen, Horizon);%火电旋转备用容量
rsmax = 50.*ones(ns, Horizon);%水电旋转备用容量
rsmin = 10.*ones(ns, Horizon);%水电旋转备用容量
rhog = 2.*ones(ngen, Horizon);
rhos = 3.*ones(ns, Horizon);
k1 = sdpvar(1);%对偶变量
k2 = sdpvar(1);%对偶变量

效果展示:

25号资源-源程序:论文可在知网下载《多源动态最优潮流的分布鲁棒优化方法》本人博客有解读资源-CSDN文库icon-default.png?t=N7T8https://download.csdn.net/download/LIANG674027206/88753735

👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆

这篇关于25文章解读与程序——中国电机工程学报EI\CSCD\北大核心《多源动态最优潮流的分布鲁棒优化方法》已提供下载资源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622117

相关文章

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN