非线性方程求根

2024-01-17 06:52
文章标签 方程 求根 非线性

本文主要是介绍非线性方程求根,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.零点定理

函数连续,两端的函数值异号,则存在零点

2.二分法

将有根区间折半,取两端异号的一半区间作为新区间,重复以上操作

误差分析,距离准确解的距离

优点是简单、对函数要求不高,连续即可,缺点是无法求复根及偶重根、收敛慢

3.简单迭代法(不动点迭代)

不同的等效变换:是否收敛、收敛速度不同

4.收敛性

充分条件:压缩映像原理

第一条保证了不动点的存在(想象y=x和y=φ(x)的图像,必有交点)

第二条则保证了不动点的唯一性(想象y=x和y=φ(x)的图像,当φ(x)的导数小于1时,有且仅有1个交点)

误差估计公式

5.局部收敛性定理

x*为φ(x)的不动点,φ‘(x)在x*的某个邻域连续,且|φ‘(x)|<1,则迭代法局部收敛

6.收敛速度

p阶收敛的定义:

其中C为渐进误差常数,p=1为线性收敛,p=2为平方收敛

收敛阶数的判断条件

7.迭代过程的加速

埃特金(Aitken)算法

斯蒂芬森(steffensen)迭代法(基于埃特金算法)

8.牛顿法

使用某一点的切线代替曲线,求根,求得的根再作为新的点重复上述操作,迭代

截图源自

【《数值分析》| 华科 | 研究生基础课】https://www.bilibili.com/video/BV1AK4y1k7Px?p=34&vd_source=a53b34e44cbfd40d72a5b337c3e5a13d

这篇关于非线性方程求根的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615183

相关文章

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

OpenGL/GLUT实践:流体模拟——数值解法求解Navier-Stokes方程模拟二维流体(电子科技大学信软图形与动画Ⅱ实验)

源码见GitHub:A-UESTCer-s-Code 文章目录 1 实现效果2 实现过程2.1 流体模拟实现2.1.1 网格结构2.1.2 数据结构2.1.3 程序结构1) 更新速度场2) 更新密度值 2.1.4 实现效果 2.2 颜色设置2.2.1 颜色绘制2.2.2 颜色交互2.2.3 实现效果 2.3 障碍设置2.3.1 障碍定义2.3.2 障碍边界条件判定2.3.3 障碍实现2.3.

R语言结构方程模型分析与实践技术应用

结构方程模型(Sructural Equation Model)是一种建立、估计和检验研究系统中多变量间因果关系的模型方法,它可以替代多元回归、因子分析、协方差分析等方法,利用图形化模型方式清晰展示研究系统中变量间的因果网络关系,是近年来地学、生态、进化、环境、医学、社会、经济领域中应用十分广泛的统计方法。然而,自Wright在1920年美国科学院院刊(PNAS)提出第一个通径/路径(Pa

解决ax+by=c,不定方程(扩展欧几里得)

首先有几个定理我们需要知道,在这里我也会一一证明。 —————————————————————————————————————— 定理1:gcd(a,b)==gcd(b,a%b);这个是欧几里得提出并证明的。 (%是取余的意思,在数学中 可用mod表示); 以下是证明过程 —————————————————————————————————————— 令a = k * b + r; (k

Python案例 | 使用四阶龙格-库塔法计算Burgers方程

使用四阶龙格-库塔法计算Burgers方程 引言求解过程完整代码 引言 Burgers方程产生于应用数学的各个领域,包括流体力学、非线性声学、气体动力学和交通流。它是一个基本的偏微分方程,可以通过删除压力梯度项从速度场的Navier-Stokes方程导出。对于黏度系数较小的情况( ν = 0.01 / π \nu = 0.01/ \pi ν=0.01/π),Burgers方程会

强化学习深入学习(一):价值函数和贝尔曼方程

文章目录 0. 引言1. 回报(Return)2. 价值函数(Value Function)3. 贝尔曼期望方程(Bellman Expectation Equation)4. 贝尔曼最优方程(Bellman Optimality Equation)总结 0. 引言 强化学习(Reinforcement Learning, RL)是一种机器学习方法,通过与环境的交互来学习如何

数论 - n元线性同余方程的解法

note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念:   形如:(a1*x1+a2*x2+....+an*xn)%m=b%m           ..................(1) 当然也有很多变形,例如:a1*x1+a2*x2+...+an*xn+m*x(n+1)=b.这两个都是等价的。 判断是否有解:

Ferrari求解四次方程

参考: 1) https://proofwiki.org/wiki/Ferrari’s_Method#google_vignette 2)https://blog.csdn.net/qq_25777815/article/details/85206702

2024国赛数学建模备赛|30种常用的算法模型之最优算法-非线性规划

1.1   非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有 单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都 有自己特定的适用范围。 下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本 概念。 最佳投资方案应是投资