刘知远LLM入门到实战——自然语言基础

2024-01-17 06:44

本文主要是介绍刘知远LLM入门到实战——自然语言基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

  • 自然语言处理基础
  • 词表示
  • 语言模型
  • N-gram Model
  • Neural Language Model:

为什么NLP等领域的模型越来越大?
大模型会带来哪些新的范式和挑战?

自然语言处理基础

让计算机理解人类语言,图灵测试就是基于对话的方式。

  • 研究历史:2011年IBM Watson DeepQA在线问答节目战胜所有人类
  • 基本任务:词性标注(动词、名词、形容词)、命名实体的识别(识别出名词是否为实体,如人名、地名、机构名)、共指消解(代词是指代哪个实体)、依赖关系(主语、谓语、修饰关系、中文的自动分词)
  • 应用:
    • 搜索引擎:匹配用户搜索的query和document的关系,以及反馈相应的广告。评估页面的内容质量。知识图谱的构建。
    • 智能音箱。
    • 翻译
    • 情感分析

词表示

  • 词和词之间相似度计算:星星-太阳
  • 词和词之间的关系:中国-北京

怎么表示词义呢?

  • 过去:用相关的词(近义词、反义词)来表示
  • 存在问题:词义存在细微差别难以表达;相关词需要大量人工标注;有的词会出现新的词义,如Apple;近义词等的标注存在主观性问题。
  • 解决:对每个词进行one-hot编码。适用于文档之间的相似度计算。但是在词的层面,one-hot假设词与词之间彼此正交,没有体现上下文的关系。
  • 改进:用上下文表示词。存在问题:词表越来越大时对存储的要求;出现频率低的词上下文就少,会很稀疏,不好表示。
  • 大模型的思路:word embedding
    建立一个低维的稠密向量空间,尝试把每个词都学到这个空间里,用这个空间所对应的位置表示这个词。从而找出词之间的对应关系
    代表工作:Word2Vec

语言模型

根据前文预测下一个词是什么,接龙。
需要的能力:1. 计算词的序列成为一句话的概率,即联合概率;2. 根据上文预测下一个词是什么
如何完成?
基本的假设:假设一个未来的词只会受前面的词的影响(马尔可夫性)。可以将联合概率拆解为条件概率相乘
在这里插入图片描述

N-gram Model

看前面出现了几个词对后面词的频度
4-gram:前面出现了3个词对下一个词的频度。统计学的模型
在这里插入图片描述
Bigram:只考虑前面一个词,N=2
Trigram:只考虑前面2个词,N=3

存在问题:基于符号的统计问题:统计结果稀疏,数据量巨大;不能理解词之间的相似度dog-cat

Neural Language Model:

首先把词表示为低维的向量;再将前几个词的向量拼接在一起;用向量来预测后面的词。
相似的词,向量也会比较相似

这篇关于刘知远LLM入门到实战——自然语言基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615160

相关文章

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读