使用主题模型和古老的人类推理进行无监督文本分类

2024-01-12 21:12

本文主要是介绍使用主题模型和古老的人类推理进行无监督文本分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、说明

        我在日常工作中不断遇到的一项挑战是在无法访问黄金标准标签的情况下标记文本数据。这绝不是一项微不足道的任务,在本文中,我将向您展示一种相对准确地完成此任务的方法,同时保持管道的可解释性和易于调整。

        一些读者可能已经开始考虑使用基于变压器的零样本模型来完成此任务(或LLM),但在这里我将提出几个原因来说明为什么这可能会出现问题:

        ——零样本学习是一个黑匣子。理解提示/类标签选择的含义相当困难,而且您很少对所有看似随意的选择会影响什么有很好的直觉。
        — Transformer 和 LLM 速度慢且成本高。使用 OpenAI 的 API 需要花费大量金钱,而且由于速度相当慢而可能不切实际。您当然可以自行托管一个较小的变压器模型,但如果您希望事情变得敏捷且响应迅速(这通常是生产中的要求),它仍然需要大量计算资源。

        在这种情况下,我想说主题模型是一个非常合理的折衷方案。它们可能不如零样本变压器模型那么智能,并且您将必须做更多的体力劳动才能在实践中使用它们,但它们可以让您对过程进行更细粒度的控制,并给出更可解释的结果,更不用说性能优势了。

二、工作流程

        在本文中,我将引导您完成创建机器学习管道的工作流程,以使用主题模型和良好的旧冷硬算法规则来标记小说文本。

2.1 数据

        为了证明我的观点,我将做一些作弊,我将使用带标签的数据集来证明我提出的方法的有效性。不过,我只会使用标签进行评估,创建管道的整个过程将基于无监督学习和我们自己的人类直觉。该数据集有 20 个新闻组,您可以使用 scikit-learn 轻松加载。

pip install scikit-learn
from sklearn.datasets import fetch_20newsgroups
import numpy as npnewsgroups = fetch_20newsgroups(subset="all")
corpus = newsgroups.data# Sklearn gives the labels back as integers, we have to map them back to
# the actual textual label.
group_labels = [newsgroups.target_names[label] for label in newsgroups.target]print(np.unique(group_labels))
------------------------------------------------------------------
array(['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc','comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware','comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles','rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt','sci.electronics', 'sci.med', 'sci.space','soc.religion.christian', 'talk.politics.guns','talk.politics.mideast', 'talk.politics.misc','talk.religion.misc'], dtype='<U24')

假设我想根据文本是否与空间相关来标记文本,以便我们可以将无监督分类性能与实际标签进行比较。我什至会将数据分成训练集和测试集,这样我们就可以确保我们不会获知模型正在测试的信息(又名主题模型不会在测试中进行训练)放)。

from sklearn.model_selection import train_test_split
is_about_space = np.array(group_labels) == "sci.space"X_train, X_test, y_train, y_test = train_test_split(corpus, is_about_space)>

2.2 无监督模型

        我们可以使用topicwizard创建易于使用的主题管道,然后解释主题。

pip install topicwizard

        在 topicwizard 中创建主题管道被认为是将矢量化器和分解模型链接在一起。

        作为矢量化器,我们将使用 scikit-learn 内置的 CountVectorizer 并设置一些看起来合理的默认频率截止值,并将过滤英语停用词。

        我们将使用非负矩阵分解作为我们的主题模型,因为它非常快(训练和推理)并且通常工作得相当好。我将确定 30 个主题,这是一个完全任意的数字。

from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import CountVectorizer
from topicwizard.pipeline import make_topic_pipeline# Setting up topic modelling pipeline
vectorizer = CountVectorizer(max_df=0.5, min_df=10, stop_words="english")
# NMF topic model with 20 topics
nmf = NMF(n_components=30)topic_pipeline = make_topic_pipeline(vectorizer, nmf)
topic_pipeline.fit(X_train)

2.3 模型解读

        topicwizard 附带了许多内置的可视化来解释主题模型。现在我们主要感兴趣的是哪些主题可能包含大部分与空间相关的单词。

        为此,我们将使用 topicwizard 的图形 API。首先,我们通过创建一组条形图来查看与每个主题最相关的单词。

from topicwizard.figures import topic_barchartstopic_barcharts(X_train, pipeline=topic_pipeline, top_n=5)

不幸的是,其中大部分都是垃圾,我们可能应该更好地清理数据集,但23_satellite_space_launch_nasa看起来相当有前途。

让我们看一下主题模型中的单词映射,以了解它们彼此之间的位置关系。

from topicwizard.figures import word_mapword_map(X_train, pipeline=topic_pipeline, top_n=5)

我们可以看到,有一组单词非常空旷,而且它们的位置也与某些与技术相关的单词非常接近。

我们还可以检查“space”和“astro”这两个词属于哪些主题,以及它们最接近的 20 个关联。我们只会显示前 8 个主题。

from topicwizard.figures import word_association_barchartfig = word_association_barchart(["space", "astro"],corpus=X_train,pipeline=topic_pipeline,n_association=20,top_n=8
)

        我们可以看到,到目前为止,最主要的主题是我们已经确定的主题,从现在开始,我将在我们的分析中只关注这一主题。

        让我们转换我们的训练语料库并查看该主题的重要性分布,以便我们可以选择合理的阈值。
首先,我将主题模型的输出设置为数据框,然后我们可以通过绘图直方图看到分布。

import plotly.express as pxtopic_pipeline.set_output(transform="pandas")topic_df = topic_pipeline.transform(X_train)
px.histogram(topic_df["23_satellite_space_launch_nasa"])

我们可以看到绝大多数文本都在0.1以下。我说我们尝试将阈值设置为 0.05,然后查看从中得到的随机文本样本。

topic_df["content"] = X_train
sample = topic_df[topic_df["23_satellite_space_launch_nasa"] > 0.05].content.sample(10)
for text in sample:print(text[:200])
From: CPKJP@vm.cc.latech.edu (Kevin Parker)
Subject: Insurance Rates on Performance Cars SUMMARY
Organization: Louisiana Tech University
Lines: 244
NNTP-Posting-Host: vm.cc.latech.edu
X-Newsreader: NN
From: pjs@euclid.JPL.NASA.GOV (Peter J. Scott)
Subject: Re: Did Microsoft buy Xhibition??
Organization: Jet Propulsion Laboratory, NASA/Caltech
Lines: 8
Distribution: world
Reply-To: pjs@euclid.jpl.na
From: ml@chiron.astro.uu.se (Mats Lindgren)
Subject: Re: Comet in Temporary Orbit Around Jupiter?
Organization: Uppsala University
Lines: 14
Distribution: world
NNTP-Posting-Host: chiron.astro.uu.seFrom: mike@gordian.com (Michael A. Thomas)
Subject: Re: The Role of the National News Media in Inflaming Passions
Organization: Gordian; Costa Mesa, CA
Distribution: ca
Lines: 13In article <1qjtmjIN
From: leech@cs.unc.edu (Jon Leech)
Subject: Space FAQ 04/15 - Calculations
Supersedes: <math_730956451@cs.unc.edu>
Organization: University of North Carolina, Chapel Hill
Lines: 334
Distribution: worl
From: wls@calvin.usc.edu (Bill Scheding)
Subject: Re: "Full page" PB screen
Organization: University of Southern California, Los Angeles, CA
Lines: 14
Distribution: world
NNTP-Posting-Host: calvin.usc
From: ghelf@violet.berkeley.edu (;;;;RD48)
Subject: Re: Soyuz and Shuttle Comparisons
Organization: University of California, Berkeley
Lines: 11
NNTP-Posting-Host: violet.berkeley.eduAre you guys ta
From: gsh7w@fermi.clas.Virginia.EDU (Greg Hennessy)
Subject: Re: Keeping Spacecraft on after Funding Cuts.
Organization: University of Virginia
Lines: 13In article <1r6aqr$dnv@access.digex.net> prb@
From: oeth6050@iscsvax.uni.edu
Subject: ****COMIC BOOK SALE****
Organization: University of Northern Iowa
Lines: 36Hello,my name is John and I have the following comic books for sale - plea
From: shafer@rigel.dfrf.nasa.gov (Mary Shafer)
Subject: Re: Inner Ear Problems from Too Much Flying?
Article-I.D.: rigel.SHAFER.93Apr6095951
Organization: NASA Dryden, Edwards, Cal.
Lines: 33
In-Reply
Hmm some of these texts do not seem to have much to do with space, let’s set a higher threshold.topic_df["content"] = X_train
sample = topic_df[topic_df["23_satellite_space_launch_nasa"] > 0.15].content.sample(10)
for text in sample:print(text[:200])

嗯,其中一些文本似乎与空间没有太大关系,让我们设置一个更高的阈值。

topic_df["content"] = X_train
sample = topic_df[topic_df["23_satellite_space_launch_nasa"] > 0.15].content.sample(10)
for text in sample:print(text[:200])
rom: gene@theporch.raider.net (Gene Wright)
Subject: NASA Special Publications for Voyager Mission?
Organization: The MacInteresteds of Nashville, Tn.
Lines: 12I have two books, both NASA Special P
From: 18084TM@msu.edu (Tom)
Subject: Billsats
X-Added: Forwarded by Space Digest
Organization: [via International Space University]
Original-Sender: isu@VACATION.VENARI.CS.CMU.EDU
Distribution: sci
Li
From: pww@spacsun.rice.edu (Peter Walker)
Subject: Re: The Universe and Black Holes, was Re: 2000 years.....
Organization: I didn't do it, nobody saw me, you can't prove a thing.
Lines: 28In article
From: da709@cleveland.Freenet.Edu (Stephen Amadei)
Subject: Project Help
Organization: Case Western Reserve University, Cleveland, Ohio (USA)
Lines: 17
NNTP-Posting-Host: hela.ins.cwru.eduHello, From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)
Subject: Washington Post Article on SSF Redesign
News-Software: VAX/VMS VNEWS 1.41    
Nntp-Posting-Host: tm0006.lerc.nasa.gov
Organization: NAS
From: u920496@daimi.aau.dk (Hans Erik Martino Hansen)
Subject: Commercials on the Moon
Organization: DAIMI: Computer Science Department, Aarhus University, Denmark
Lines: 16I have often thought abou
From: wb8foz@skybridge.SCL.CWRU.Edu (David Lesher)
Subject: Re: No. Re: Space Marketing would be wonderfull.
Organization: NRK Clinic for habitual NetNews abusers - Beltway Annex
Lines: 11
Reply-To: w
From: 18084TM@msu.edu (Tom)
Subject: Solid state vs. tube/analog
X-Added: Forwarded by Space Digest
Organization: [via International Space University]
Original-Sender: isu@VACATION.VENARI.CS.CMU.EDU
D
From: pgf@srl03.cacs.usl.edu (Phil G. Fraering)
Subject: Re: Gamma Ray Bursters. positional stuff.
Organization: Univ. of Southwestern Louisiana
Lines: 24belgarath@vax1.mankato.msus.edu writes:>  
From: rnichols@cbnewsg.cb.att.com (robert.k.nichols)
Subject: Re: Permanaent Swap File with DOS 6.0 dbldisk
Summary: PageOverCommit=factor
Organization: AT&T
Lines: 50In article <93059@hydra.gatech.

这些似乎确实与空间相关,所以让我们保留 0.15 作为阈值。

2.4 分类管道

        现在我们已经有了如何查看哪些文本与空间相关的规则,我们应该将这些知识合并到机器学习管道中,以便我们可以在未来的工作或生产中轻松使用。

        为此,我们将使用令人惊叹的人类学习库,您可以在其中创建基于规则的组件,甚至可以绘制东西(这真的很棒)。

        为此,我们必须冻结主题模型,以便在管道上调用 fit() 时不会对其进行训练

pip install human-learn
from hulearn.classification import FunctionClassifier
from sklearn.pipeline import make_pipeline# Creating rule for classifying something as a space document
def space_rule(df, threshold=0.15):return df["23_satellite_space_launch_nasa"] > threshold# Freezing topic pipeline
topic_pipeline.freeze = True
classifier = FunctionClassifier(space_rule)
cls_pipeline = make_pipeline(topic_pipeline, classifier).fit(X_train)

        我们现在有了一个与空间相关的文本的分类器,不是很漂亮吗?请记住,我们甚至还没有触及标签,只是使用了主题模型和我们自己的人类直觉。

三、评估

        为了检查这是否确实是一种有效的方法,让我们根据测试数据评估我们的分类管道。

from sklearn.metrics import classification_reporty_pred = cls_pipeline.predict(X_test)
print(classification_report(y_test, y_pred))
   precision    recall  f1-score   supportFalse       0.98      0.98      0.98      4475True       0.65      0.70      0.68       237accuracy                           0.97      4712macro avg       0.82      0.84      0.83      4712
weighted avg       0.97      0.97      0.97      4712

        考虑到我们对标签的查看绝对为零,并且数据集非常不平衡,这些结果非常好!

        我怀疑我们仍然可以调整这一点,并通过更干净的数据、更明智的主题模型选择和潜在的更多主题来获得更好的结果,以便我们可以捕获数据中的更多差异。

马顿·卡多斯

 

这篇关于使用主题模型和古老的人类推理进行无监督文本分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599171

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意