了解PyTorch中的缩放点积注意力及演示

2024-01-12 07:12

本文主要是介绍了解PyTorch中的缩放点积注意力及演示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torch.nn.functional.scaled_dot_product_attention 函数在 PyTorch 框架中用于实现缩放点积注意力(Scaled Dot-Product Attention)。这是一种在自然语言处理和计算机视觉等领域常用的注意力机制。它的主要目的是通过计算查询(query)、键(key)和值(value)之间的关系,来决定我们应该在输入的哪些部分上聚焦。

函数用法和用途:

此函数通过对查询(query)、键(key)和值(value)张量进行操作,计算得到注意力机制的输出。它主要用于序列模型中,如Transformer结构,帮助模型更有效地捕捉序列中的重要信息。

参数说明:

  • query:查询张量,形状为(N, ..., L, E),其中N是批大小,L是目标序列长度,E是嵌入维度。
  • key:键张量,形状为(N, ..., S, E),S是源序列长度。
  • value:值张量,形状为(N, ..., S, Ev),Ev是值的嵌入维度。
  • attn_mask:可选的注意力掩码张量,形状为(N, ..., L, S)
  • dropout_p:丢弃概率,用于应用dropout。
  • is_causal:如果为真,假设因果注意力掩码。
  • scale:缩放因子,在softmax之前应用。

注意事项:

  • 此函数是beta版本,可能会更改。
  • 根据不同的后端(如CUDA),函数可能调用优化的内核以提高性能。
  • 如果需要更高的精度,可以使用支持torch.float64的C++实现。

数学原理:

缩放点积注意力的核心是根据查询和键之间的点积来计算注意力权重,然后将这些权重应用于值。公式通常如下所示:

Attenton(Q,K,V)=softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V

其中Q、K和V 分别是查询、键和值矩阵,d_{k} 是键向量的维度。

示例代码:

import torch
import torch.nn.functional as F# 定义查询、键和值张量
query = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
key = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
value = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")# 使用上下文管理器确保运行一个融合内核
with torch.backends.cuda.sdp_kernel(enable_math=False):output = F.scaled_dot_product_attention(query, key, value)

这段代码首先定义了查询、键和值张量,然后使用torch.backends.cuda.sdp_kernel上下文管理器来确保使用一个融合内核,最后调用scaled_dot_product_attention函数计算注意力输出。 

总结

torch.nn.functional.scaled_dot_product_attention 是一个强大的PyTorch函数,用于实现缩放点积注意力机制。它通过计算查询、键和值之间的关系,为深度学习模型提供了一种有效的方式来捕获和关注重要信息。适用于各种序列处理任务,此函数特别适合于复杂的自然语言处理和计算机视觉应用。其高效的实现和可选的优化内核使其在处理大规模数据时表现卓越。

这篇关于了解PyTorch中的缩放点积注意力及演示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597154

相关文章

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

速了解MySQL 数据库不同存储引擎

快速了解MySQL 数据库不同存储引擎 MySQL 提供了多种存储引擎,每种存储引擎都有其特定的特性和适用场景。了解这些存储引擎的特性,有助于在设计数据库时做出合理的选择。以下是 MySQL 中几种常用存储引擎的详细介绍。 1. InnoDB 特点: 事务支持:InnoDB 是一个支持 ACID(原子性、一致性、隔离性、持久性)事务的存储引擎。行级锁:使用行级锁来提高并发性,减少锁竞争

【Tools】大模型中的注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 在大模型中,注意力机制是一种重要的技术,它被广泛应用于自然语言处理领域,特别是在机器翻译和语言模型中。 注意力机制的基本思想是通过计算输入序列中各个位置的权重,以确

研究人员在RSA大会上演示利用恶意JPEG图片入侵企业内网

安全研究人员Marcus Murray在正在旧金山举行的RSA大会上公布了一种利用恶意JPEG图片入侵企业网络内部Windows服务器的新方法。  攻击流程及漏洞分析 最近,安全专家兼渗透测试员Marcus Murray发现了一种利用恶意JPEG图片来攻击Windows服务器的新方法,利用该方法还可以在目标网络中进行特权提升。几天前,在旧金山举行的RSA大会上,该Marcus现场展示了攻击流程,

PHP: 深入了解一致性哈希

前言 随着memcache、redis以及其它一些内存K/V数据库的流行,一致性哈希也越来越被开发者所了解。因为这些内存K/V数据库大多不提供分布式支持(本文以redis为例),所以如果要提供多台redis server来提供服务的话,就需要解决如何将数据分散到redis server,并且在增减redis server时如何最大化的不令数据重新分布,这将是本文讨论的范畴。 取模算法 取模运

Weex入门教程之1,了解Weex

【资料合集】Weex Conf回顾集锦:讲义PDF+活动视频! PDF分享:链接:http://pan.baidu.com/s/1hr8RniG 密码:fa3j 官方教程:https://weex-project.io/cn/v-0.10/guide/index.html 用意 主要是介绍Weex,并未涉及开发方面,好让我们开始开发之前充分地了解Weex到底是个什么。 以下描述主要摘取于

Collection的所有的方法演示

import java.util.ArrayList;import java.util.Collection;import java.util.Iterator;public class TestCollection {/*** @param args* Collection的所有的方法演示* 此程序没有使用泛型,所以可以添加任意类型* 以后如果写到泛型会补充这一方面的内容*/public s

类和对象的定义和调用演示(C++)

我习惯把类的定义放在头文件中 Student.h #define _CRT_SECURE_NO_WARNINGS#include <string>using namespace std;class student{public:char m_name[25];int m_age;int m_score;char* get_name(){return m_name;}int set_name