《Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks》论文阅读

本文主要是介绍《Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks》论文阅读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 文章介绍
    • 文章模型
      • 通过依赖树构建图
      • 学习特定方面实体的表示
    • 总结

文章地址: https://www.sciencedirect.com/science/article/pii/S0950705121009059

文章介绍

  最近,图卷积神经网络因为其优越的性能(能很好的考虑词语间的依赖)被广泛的应用在自然语言处理任务当中。其一般方式为首先将文本转化为邻接矩阵的形似,然后结合文本的特征表示即可输入到GCN中,但是现有的研究大多针对于如何更好的表示词语间的依赖,而忽略了上下文的情感知识。因此这篇文章在结合SenticNet的基础上构建词语间的依赖,提出了Sentic GCN。

文章模型

在这里插入图片描述
  文章提出模型框架如上图所示,嵌入层可选用glove或者BERT,然后通过双向LSTM或者文本的特征向量表示。在另一方面通过spacy工具,在结合SenticNet的基础上生成词语之间的依赖最后输入到GCN中完成分类。

通过依赖树构建图

  对于每一句话作者首先采用了最基本的spacy工具生成词语间的邻接矩阵,
在这里插入图片描述
在这里插入图片描述
  然后通过SenticNet(开源的)获取每个单词的情感评分,并与邻接矩阵相加
在这里插入图片描述
  此外,现有的基于GCN的方面情感分析模型在构建图时通常忽略了对给定方面的重要关注。因此,在这项工作中,作者 基于SenticNet进一步增强了上下文词和体词之间的情感依赖性,最终表示如下
在这里插入图片描述
  对于GCN的使用,作者是直接借鉴了2017年那一篇的经典文章这里赘述。

学习特定方面实体的表示

  这里作者对不属于特定实体的表示直接处理为0
在这里插入图片描述
在这里插入图片描述
除此之外作者还应用了检索注意力机制等方式进一步提高模型的得分。

总结

  目前对于模型的学习越发的依赖于各种复杂的对于文本的处理,也就越要求我们能细致的理解模型本身。对于外部知识的借鉴肯定是非常正确的,但直接将情感分数和邻接矩阵的0-1表示相加的意义确实有待商榷。

这篇关于《Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks》论文阅读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/594052

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需