Python数据挖掘学习笔记(7)频繁模式挖掘算法----FP-growth

本文主要是介绍Python数据挖掘学习笔记(7)频繁模式挖掘算法----FP-growth,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、相关原理

       FP-Growth算法是韩嘉炜等人在2000年提出的关联分析算法,它采取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息。在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构。FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成。FP-Growth算法基于以上的结构加快整个挖掘过程。

       FP-growth算法只需要对数据库进行了两次扫描,而Apriori算法对于每个潜在的频繁项集都会扫描数据集判定给定模式是否频繁,因此FP-growth算法的速度要比Apriori算法快。在小规模数据集上,这不是什么问题,但是当处理大规模数据集时,就会产生很大的区别。大致流程如下图:

                                        

       关于FP-growth算法需要注意的两点是:

     (1)该算法采用了与Apriori完全不同的方法来发现频繁项集

     (2)该算法虽然能更为高效地发现频繁项集,但不能用于发现关联规则。

       从FP-growth算法挖掘频繁项集这个流程图中可以看出,FP-growth算法主要有两个步骤,即构建FP树以及从FP树中挖掘频繁项集。

       其他相关原理可查看相关文章,推荐机器学习实战一书。

二、编写代码

1、数据初始化方法:

#创建数据集
def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDat#数据格式化
def createInitSet(dataSet):retDict = {}for trans in dataSet:#print(trans)fset = frozenset(trans)#print(fset)retDict.setdefault(fset, 0) #返回指定键的值,如果没有则添加一个键#print(retDict)retDict[fset] += 1#print(retDict)return retDict

2、FP的数据结构类:

#FP树的数据结构类
class treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValue       #名字变量self.count = numOccur       #计数变量(频率)self.nodeLink = None        #链接相似元素项self.parent = parentNode    #当前父节点self.children = {}          #用于存放子节点def inc(self, numOccur): #对count变量增加给定值self.count += numOccur def disp(self, ind=1):  #将树以文本形式显示,主要是方便调试。print(' '*ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind+1)         #子节点向右缩减

3、创建FP树的相关方法:

#更新头指针表
def updateHeader(nodeToTest, targetNode):  while (nodeToTest.nodeLink != None):  nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNode#FP树的生长函数
def updateTree(items, myTree, headerTable, count):if items[0] in myTree.children:  myTree.children[items[0]].inc(count)else:  myTree.children[items[0]] = treeNode(items[0], count, myTree)if headerTable[items[0]][1] == None:headerTable[items[0]][1] = myTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], myTree.children[items[0]])if len(items) > 1:  updateTree(items[1:], myTree.children[items[0]], headerTable, count)#创建FP树,默认最小支持度为1,将根据支持度对数据进行第一次过滤
def createTree(dataSet, minSup=1):headerTable = {}#第一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup:del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]myTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p:(p[1],p[0]), reverse=True)]updateTree(orderedItems, myTree, headerTable, count)return myTree, headerTable

4、从FP树中获得条件模式基

#迭代上溯整棵树
def ascendTree(leafNode, prefixPath):if leafNode.parent != None:prefixPath.append(leafNode.name)ascendTree(leafNode.parent, prefixPath)
#遍历链表
def findPrefixPath(basePat, headerTable):condPats = {}treeNode = headerTable[basePat][1]while treeNode != None:prefixPath = []ascendTree(treeNode, prefixPath)if len(prefixPath) > 1:condPats[frozenset(prefixPath[1:])] = treeNode.counttreeNode = treeNode.nodeLinkreturn condPats

5、创造条件FP树

def mineTree(inTree, headerTable, minSup=1, preFix=set([]), freqItemList=[]):#排序minSup asc, value ascbigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: (p[1][0],p[0]))]for basePat in bigL:newFreqSet = preFix.copy()newFreqSet.add(basePat)freqItemList.append(newFreqSet)# 通过条件模式基找到的频繁项集condPattBases = findPrefixPath(basePat, headerTable)myCondTree, myHead = createTree(condPattBases, minSup)if myHead != None:print('condPattBases: ', basePat, condPattBases)myCondTree.disp()print('*' * 30)mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)

6、运行:

#初始化数据集
simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
freqItems=[] #存储频繁项集
#创建FP树,支持度设为3
myFPTree,myheader = createTree(dictDat, 3)
#创建条件FP树,支持度设为2
mineTree(myFPTree, myheader, 2 ,set([]),freqItems)
print('频繁项集为'+str(freqItems))

7、运行结果:

condPattBases:XXXX是频繁项的前缀路径,下面的是条件FP树。

三、参考资料

1、Harrington P , 李锐等. 机器学习实战[M]. 人民邮电出版社, 2013.

2、https://www.bilibili.com/video/av40754697 (推荐购买完整版)

3、https://blog.csdn.net/dq_dm/article/details/38111097

这篇关于Python数据挖掘学习笔记(7)频繁模式挖掘算法----FP-growth的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/593599

相关文章

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相