本文主要是介绍python爬虫股票数据分析判断股票好坏_Python爬取股票信息,并可视化数据的示例...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
前言
截止2019年年底我国股票投资者数量为15975.24万户, 如此多的股民热衷于炒股,首先抛开炒股技术不说, 那么多股票数据是不是非常难找, 找到之后是不是看着密密麻麻的数据是不是头都大了?
今天带大家爬取雪球平台的股票数据, 并且实现数据可视化
先看下效果图
基本环境配置
python 3.6
pycharm
requests
csv
time
目标地址
爬虫代码
请求网页
import requests
url = 'https://xueqiu.com/service/v5/stock/screener/quote/list'
response = requests.get(url=url, params=params, headers=headers, cookies=cookies)
html_data = response.json()
解析数据
data_list = html_data['data']['list']
for i in data_list:
dit = {}
dit['股票代码'] = i['symbol']
dit['股票名字'] = i['name']
dit['当前价'] = i['current']
dit['涨跌额'] = i['chg']
dit['涨跌幅/%'] = i['percent']
dit['年初至今/%'] = i['current_year_percent']
dit['成交量'] = i['volume']
dit['成交额'] = i['amount']
dit['换手率/%'] = i['turnover_rate']
dit['市盈率TTM'] = i['pe_ttm']
dit['股息率/%'] = i['dividend_yield']
dit['市值'] = i['market_capital']
print(dit)
保存数据
import csv
f = open('股票数据.csv', mode='a', encoding='utf-8-sig', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['股票代码', '股票名字', '当前价', '涨跌额', '涨跌幅/%', '年初至今/%', '成交量', '成交额', '换手率/%', '市盈率TTM', '股息率/%', '市值'])
csv_writer.writeheader()
csv_writer.writerow(dit)
f.close()
完整代码
import pprint
import requests
import time
import csv
f = open('股票数据.csv', mode='a', encoding='utf-8-sig', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['股票代码', '股票名称', '当前价', '涨跌额', '涨跌幅/%', '年初至今/%', '成交量', '成交额', '换手率/%', '市盈率TTM', '股息率/%', '市值'])
csv_writer.writeheader()
for page in range(1, 53):
time.sleep(1)
url = 'https://xueqiu.com/service/v5/stock/screener/quote/list'
date = round(time.time()*1000)
params = {
'page': '{}'.format(page),
'size': '30',
'order': 'desc',
'order_by': 'amount',
'exchange': 'CN',
'market': 'CN',
'type': 'sha',
'_': '{}'.format(date),
}
cookies = {
'Cookie': 'acw_tc=2760824216007592794858354eb971860e97492387fac450a734dbb6e89afb; xq_a_token=636e3a77b735ce64db9da253b75cbf49b2518316; xqat=636e3a77b735ce64db9da253b75cbf49b2518316; xq_r_token=91c25a6a9038fa2532dd45b2dd9b573a35e28cfd; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTYwMjY0MzAyMCwiY3RtIjoxNjAwNzU5MjY3OTEwLCJjaWQiOiJkOWQwbjRBWnVwIn0.bengzIpmr0io9f44NJdHuc_6g9EIjtrSlMgnqwKSWVzI4syI_yIH1F-GJfK4bTelWzDirufjWMW9DfDMyMkI75TpJqiwIq8PRsa1bQ7IuCXLbN71ebsiTOGfA5OsWSPQOdVXQA0goqC4yvXLOk5KgC5FQIzZut0N4uaRDLsq7vhmcb8CBw504tCZnbIJTfGGIFIfw7TkwuUCXGY6Q-0mlOG8U4EUTcOCuxN87Ej_OIKnXN8cTSVh7XW6SFxOgU6p3yUXDgvS04rt-nFewpNNqfbGAKk965N-HJ9Mq8E52BRJ3rt_ndYP8yCaeQ6xSsz5P2mNlKwNFe9EQeltim_mDg; u=501600759279498; device_id=24700f9f1986800ab4fcc880530dd0ed; Hm_lvt_1db88642e346389874251b5a1eded6e3=1600759286; _ga=GA1.2.2049292015.1600759388; _gid=GA1.2.391362708.1600759388; s=du11eogy79; __utma=1.2049292015.1600759388.1600759397.1600759397.1; __utmc=1; __utmz=1.1600759397.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __utmb=1.3.10.1600759397; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1600759448'
}
headers = {
'Host': 'xueqiu.com',
'Pragma': 'no-cache',
'Referer': 'https://xueqiu.com/hq',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
}
response = requests.get(url=url, params=params, headers=headers, cookies=cookies)
html_data = response.json()
data_list = html_data['data']['list']
for i in data_list:
dit = {}
dit['股票代码'] = i['symbol']
dit['股票名称'] = i['name']
dit['当前价'] = i['current']
dit['涨跌额'] = i['chg']
dit['涨跌幅/%'] = i['percent']
dit['年初至今/%'] = i['current_year_percent']
dit['成交量'] = i['volume']
dit['成交额'] = i['amount']
dit['换手率/%'] = i['turnover_rate']
dit['市盈率TTM'] = i['pe_ttm']
dit['股息率/%'] = i['dividend_yield']
dit['市值'] = i['market_capital']
csv_writer.writerow(dit)
print(dit)
f.close()
数据分析代码
c = (
Bar()
.add_xaxis(list(df2['股票名称'].values))
.add_yaxis("股票成交量情况", list(df2['成交量'].values))
.set_global_opts(
title_opts=opts.TitleOpts(title="成交量图表 - Volume chart"),
datazoom_opts=opts.DataZoomOpts(),
)
.render("data.html")
)
以上就是Python爬取股票信息,并可视化数据的示例的详细内容,更多关于Python爬取股票信息的资料请关注脚本之家其它相关文章!
这篇关于python爬虫股票数据分析判断股票好坏_Python爬取股票信息,并可视化数据的示例...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!