python爬虫股票数据分析判断股票好坏_Python爬取股票信息,并可视化数据的示例...

本文主要是介绍python爬虫股票数据分析判断股票好坏_Python爬取股票信息,并可视化数据的示例...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

截止2019年年底我国股票投资者数量为15975.24万户, 如此多的股民热衷于炒股,首先抛开炒股技术不说, 那么多股票数据是不是非常难找, 找到之后是不是看着密密麻麻的数据是不是头都大了?

今天带大家爬取雪球平台的股票数据, 并且实现数据可视化

先看下效果图

2020926142151698.gif?202082614226

基本环境配置

python 3.6

pycharm

requests

csv

time

目标地址

2020926142311314.jpg?2020826142331

爬虫代码

请求网页

import requests

url = 'https://xueqiu.com/service/v5/stock/screener/quote/list'

response = requests.get(url=url, params=params, headers=headers, cookies=cookies)

html_data = response.json()

解析数据

data_list = html_data['data']['list']

for i in data_list:

dit = {}

dit['股票代码'] = i['symbol']

dit['股票名字'] = i['name']

dit['当前价'] = i['current']

dit['涨跌额'] = i['chg']

dit['涨跌幅/%'] = i['percent']

dit['年初至今/%'] = i['current_year_percent']

dit['成交量'] = i['volume']

dit['成交额'] = i['amount']

dit['换手率/%'] = i['turnover_rate']

dit['市盈率TTM'] = i['pe_ttm']

dit['股息率/%'] = i['dividend_yield']

dit['市值'] = i['market_capital']

print(dit)

保存数据

import csv

f = open('股票数据.csv', mode='a', encoding='utf-8-sig', newline='')

csv_writer = csv.DictWriter(f, fieldnames=['股票代码', '股票名字', '当前价', '涨跌额', '涨跌幅/%', '年初至今/%', '成交量', '成交额', '换手率/%', '市盈率TTM', '股息率/%', '市值'])

csv_writer.writeheader()

csv_writer.writerow(dit)

f.close()

完整代码

import pprint

import requests

import time

import csv

f = open('股票数据.csv', mode='a', encoding='utf-8-sig', newline='')

csv_writer = csv.DictWriter(f, fieldnames=['股票代码', '股票名称', '当前价', '涨跌额', '涨跌幅/%', '年初至今/%', '成交量', '成交额', '换手率/%', '市盈率TTM', '股息率/%', '市值'])

csv_writer.writeheader()

for page in range(1, 53):

time.sleep(1)

url = 'https://xueqiu.com/service/v5/stock/screener/quote/list'

date = round(time.time()*1000)

params = {

'page': '{}'.format(page),

'size': '30',

'order': 'desc',

'order_by': 'amount',

'exchange': 'CN',

'market': 'CN',

'type': 'sha',

'_': '{}'.format(date),

}

cookies = {

'Cookie': 'acw_tc=2760824216007592794858354eb971860e97492387fac450a734dbb6e89afb; xq_a_token=636e3a77b735ce64db9da253b75cbf49b2518316; xqat=636e3a77b735ce64db9da253b75cbf49b2518316; xq_r_token=91c25a6a9038fa2532dd45b2dd9b573a35e28cfd; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTYwMjY0MzAyMCwiY3RtIjoxNjAwNzU5MjY3OTEwLCJjaWQiOiJkOWQwbjRBWnVwIn0.bengzIpmr0io9f44NJdHuc_6g9EIjtrSlMgnqwKSWVzI4syI_yIH1F-GJfK4bTelWzDirufjWMW9DfDMyMkI75TpJqiwIq8PRsa1bQ7IuCXLbN71ebsiTOGfA5OsWSPQOdVXQA0goqC4yvXLOk5KgC5FQIzZut0N4uaRDLsq7vhmcb8CBw504tCZnbIJTfGGIFIfw7TkwuUCXGY6Q-0mlOG8U4EUTcOCuxN87Ej_OIKnXN8cTSVh7XW6SFxOgU6p3yUXDgvS04rt-nFewpNNqfbGAKk965N-HJ9Mq8E52BRJ3rt_ndYP8yCaeQ6xSsz5P2mNlKwNFe9EQeltim_mDg; u=501600759279498; device_id=24700f9f1986800ab4fcc880530dd0ed; Hm_lvt_1db88642e346389874251b5a1eded6e3=1600759286; _ga=GA1.2.2049292015.1600759388; _gid=GA1.2.391362708.1600759388; s=du11eogy79; __utma=1.2049292015.1600759388.1600759397.1600759397.1; __utmc=1; __utmz=1.1600759397.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __utmb=1.3.10.1600759397; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1600759448'

}

headers = {

'Host': 'xueqiu.com',

'Pragma': 'no-cache',

'Referer': 'https://xueqiu.com/hq',

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'

}

response = requests.get(url=url, params=params, headers=headers, cookies=cookies)

html_data = response.json()

data_list = html_data['data']['list']

for i in data_list:

dit = {}

dit['股票代码'] = i['symbol']

dit['股票名称'] = i['name']

dit['当前价'] = i['current']

dit['涨跌额'] = i['chg']

dit['涨跌幅/%'] = i['percent']

dit['年初至今/%'] = i['current_year_percent']

dit['成交量'] = i['volume']

dit['成交额'] = i['amount']

dit['换手率/%'] = i['turnover_rate']

dit['市盈率TTM'] = i['pe_ttm']

dit['股息率/%'] = i['dividend_yield']

dit['市值'] = i['market_capital']

csv_writer.writerow(dit)

print(dit)

f.close()

2020926143428633.jpg?2020826143440

2020926143459691.jpg?202082614357

数据分析代码

c = (

Bar()

.add_xaxis(list(df2['股票名称'].values))

.add_yaxis("股票成交量情况", list(df2['成交量'].values))

.set_global_opts(

title_opts=opts.TitleOpts(title="成交量图表 - Volume chart"),

datazoom_opts=opts.DataZoomOpts(),

)

.render("data.html")

)

2020926143549602.jpg?2020826143559

以上就是Python爬取股票信息,并可视化数据的示例的详细内容,更多关于Python爬取股票信息的资料请关注脚本之家其它相关文章!

这篇关于python爬虫股票数据分析判断股票好坏_Python爬取股票信息,并可视化数据的示例...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/569599

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu