Google机器人团队获ICRA 2023 机器人学习方向最佳论文奖:机器人实体控制的大语言模型程序

本文主要是介绍Google机器人团队获ICRA 2023 机器人学习方向最佳论文奖:机器人实体控制的大语言模型程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇论文主要讨论了大型语言模型(LLM)在机器人控制方面的应用。作者们指出,尽管LLM在理解和生成自然语言方面表现出色,但其在实际应用中,如机器人控制等领域的应用仍然有限。因此,他们提出了一种新的方法,即使用LLM编写代码来控制机器人的行为。
在这里插入图片描述

他们发现,编写代码的LLM在规划、策略逻辑和控制方面表现出色。这些模型可以被重新用于编写机器人策略代码,给出自然语言命令(格式化为注释)。策略代码可以表达处理感知输出(例如,开放词汇对象检测器)和参数化控制原语API的函数或反馈循环。当提供了几个示例语言命令和相应的策略代码(通过少量提示),LLM可以接收新的命令并自主重新组合API调用以生成新的策略代码。此外,编写代码的模型可以表达各种算术运算以及基于语言的反馈循环。他们不仅可以推广到新的指令,而且由于在数十亿行代码和注释上进行了训练,也可以根据上下文为模糊的描述(例如,“更快”和“向左”)规定精确的值,以引出行为常识。

方法部分,作者们详细介绍了如何使用大型语言模型(LLM)生成代码作为策略。他们的方法主要包括以下几个步骤:

1.定义语言模型程序(LMP):作者们首先定义了语言模型程序(LMP)的概念。LMP是由语言模型生成并在系统上执行的任何程序。他们的工作主要研究了一类名为“代码作为策略”的LMP,这类LMP将语言指令映射到代码片段,这些代码片段可以(i)响应感知输入(即来自传感器或传感器上层的模块),(ii)参数化控制原语API,并(iii)直接在机器人上编译和执行。

2.生成LMP:作者们展示了如何使用LLM生成LMP。他们提供了一些示例,如何将自然语言指令(格式化为注释)转化为代码。例如,他们展示了如何使用LLM编写代码来控制机器人的行为,如移动物体,识别物体,以及执行更复杂的任务。

3.执行LMP:为了执行LMP,他们首先检查它是否安全运行,确保没有导入语句,没有以__开头的特殊变量,也没有对exec和eval的调用。然后,他们使用Python的exec函数,将代码作为输入字符串,并使用两个字典形成该代码执行的范围:(i)全局变量,包含生成的代码可能调用的所有API,和(ii)局部变量,一个将在exec期间定义的变量和新函数填充的空字典。如果LMP预计会返回一个值,他们会在exec完成后从局部变量中获取它。

4.提示生成LMP:生成LMP的提示包含两个元素:(i)提示,例如导入语句,告诉LLM哪些API可用以及如何使用这些API;(ii)示例,这些是指令到代码对,展示了如何将自然语言指令转化为代码。这些可能包括执行算术运算,调用其他API,以及编程语言的其他特性。

5.高级LMP:作者们还展示了如何使用LLM生成更复杂的代码,如使用控制流(如if-else和循环语句)和嵌套函数调用。他们还展示了如何使用LLM生成函数以供未来使用,以及如何使用LLM遵循良好的抽象实践,避免将所有代码逻辑“扁平化”。

在这篇论文的实验部分,作者们展示了如何使用大型语言模型(LLM)编写代码来控制机器人的行为。他们提供了一些示例,包括如何使用LLM编写Python脚本,如何使用第三方库进行复杂操作,以及如何使用第一方库进行操作。他们还展示了如何使用LLM编写更复杂的代码,如使用控制流(如if-else和循环语句)和嵌套函数调用。

在这里插入图片描述

在实验中,他们使用了一些具体的任务来展示他们的方法的效果。例如,他们展示了如何使用LLM编写代码来移动物体,如何识别物体,以及如何执行更复杂的任务。他们还展示了如何使用LLM生成函数以供未来使用,以及如何使用LLM遵循良好的抽象实践,避免将所有代码逻辑“扁平化”。

以下是一些具体的实验示例:

1.他们展示了如何使用LLM编写代码来移动物体。例如,他们展示了如何使用LLM编写代码来移动一个名为“红色块”的物体。他们首先获取该物体的位置,然后将其向右移动一定的距离。

2.他们展示了如何使用LLM编写代码来识别物体。例如,他们展示了如何使用LLM编写代码来识别一个名为“蓝色块”的物体。他们使用了一个开放词汇的物体检测器来完成这个任务。

3.他们展示了如何使用LLM编写代码来执行更复杂的任务。例如,他们展示了如何使用LLM编写代码来将一个名为“蓝色块”的物体放在一个名为“蓝色碗”的物体上。

4.他们展示了如何使用LLM生成函数以供未来使用。例如,他们展示了如何使用LLM编写代码来定义一个名为“get_total”的函数,该函数接受一个名为“xs”的参数,并返回其总和。

5.他们展示了如何使用LLM遵循良好的抽象实践,避免将所有代码逻辑“扁平化”。例如,他们展示了如何使用LLM编写代码来定义一个名为“get_objs_bigger_than_area_th”的函数,该函数接受两个参数——一个名为“obj_names”的物体名列表和一个名为“bbox_area_th”的阈值,然后返回所有大于该阈值的物体的名字。

这些实验结果表明,LLM可以有效地用于编写控制机器人行为的代码,具有很高的实用性和广泛的应用前景。
在这里插入图片描述

最后作者们总结了他们的研究成果,并对未来的研究方向进行了展望。他们认为,大型语言模型(LLM)在编写代码方面的能力为机器人控制提供了新的可能性。通过使用LLM,我们可以将自然语言指令转化为机器人策略代码,从而实现更复杂的机器人行为。此外,他们还指出,LLM不仅可以理解和生成自然语言,还可以通过使用"say(text)"作为一个可用的动作原语API,参与人机对话和问答。他们的研究结果表明,LLM可以有效地编写Python程序,并能够处理各种复杂的任务,如移动物体,识别物体,以及执行更复杂的任务。他们的方法不仅可以广泛应用于机器人控制,还可以用于其他需要编写代码的领域。

这篇关于Google机器人团队获ICRA 2023 机器人学习方向最佳论文奖:机器人实体控制的大语言模型程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/555823

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了