经典目标检测YOLO系列(一)复现YOLOV1(2)反解边界框及后处理

本文主要是介绍经典目标检测YOLO系列(一)复现YOLOV1(2)反解边界框及后处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

经典目标检测YOLO系列(一)复现YOLOV1(2)反解边界框及后处理

在上个博客,我们提出了新的YOLOV1架构,这次我们解决前向推理过程中的两个问题。
经典目标检测YOLO系列(一)YOLOV1的复现(1)总体架构

1、边界框的计算

1.1 反解边界框公式的改变

1.1.1 原版YOLOV1的中心点量化误差的计算公式

如下图,目标狗的中心点所在网格为黄色部分,中心点为图中红点。

在原版的YOLOV1中,我们发现中心点【红点】距离黄色网格左上角处【坐标为(1, 4)】是有差距的,这其实就是由于降采样带来的量化误差,因此,我们只要获得了这个量化误差,就能获得中心点的准确坐标了。

在这里插入图片描述

YOLOv1原版中计算这个量化误差的过程如下:

在这里插入图片描述

在上图中计算出grid_x,grid_y的坐标,我们可以用矩阵进行表示,我们不妨称这个矩阵为G,矩阵的值如下

[[0., 0.],[1., 0.],[2., 0.],[3., 0.],[4., 0.],[5., 0.],[6., 0.],[0., 1.],[1., 1.],[2., 1.],[3., 1.],[4., 1.],[5., 1.],[6., 1.],[0., 2.],[1., 2.],[2., 2.],[3., 2.],[4., 2.],[5., 2.],[6., 2.],[0., 3.],[1., 3.],[2., 3.],[3., 3.],[4., 3.],[5., 3.],[6., 3.],[0., 4.],[1., 4.],[2., 4.],[3., 4.],[4., 4.],[5., 4.],[6., 4.],[0., 5.],[1., 5.],[2., 5.],[3., 5.],[4., 5.],[5., 5.],[6., 5.],[0., 6.],[1., 6.],[2., 6.],[3., 6.],[4., 6.],[5., 6.],[6., 6.]
]

计算出来的量化误差,其实就是中心点【红点】距离【黄色网格左上角点】的X轴和Y轴方向的偏移量。

在这里插入图片描述

1.1.2 原版YOLOV1反解边界框的公式

YOLOv1原版中根据预测值反解边界框的过程如下:
c e n t e r x = ( g r i d x + c x ) × s t r i d e c e n t e r y = ( g r i d y + c y ) × s t r i d e w = w p r e d × w i m a g e h = h p r e d × h i m a g e center_x = (grid_x + c_x)×stride \\ center_y = (grid_y + c_y)×stride \\ w = w_{pred} × w_{image} \\ h = h_{pred} × h_{image} centerx=(gridx+cx)×stridecentery=(gridy+cy)×stridew=wpred×wimageh=hpred×himage

1.1.3 改进YOLOV1

在原版的YOLOv1中,bbox预测主要包括目标中心点的偏移量 cx,cy 和归一化的边界框的宽高 w,h ,但是不论是哪个量,原版的YOLOv1均使用线性函数来输出,未加任何约束限制,很明显会有以下两点问题:

  • 由于偏移量cx,cy是介于01范围内的数,因此,其本身就是有上下界的,而线性输出并没有上下界,这就容易导致在学习的初期,网络可能预测的值非常大,导致bbox分支学习不稳定。

  • 边界框的宽高显然是个非负数,而线性输出不能保证这一点,这也可能造成训练过程中的不稳定,一些输出一些不合理的数值(比如负数)。

因此对于这两个问题,我们进行改进:

  • 第一个问题:假设模型的输出为 tx,ty ,我们使用sigmoid函数将其映射到0~1的范围内,保证网络的输出值是合理的,使得训练更加稳定。

  • 第二个问题:采用log-exp方法来处理。

    • YOLOv1所要预测的不是归一化的边界框宽高,而是经过log函数压缩后的宽高。
    • 由于log函数的指数级的压缩特性,在一定程度上可以拉近大目标和小目标之间的尺寸量级,因此,对于平衡不同尺度的目标的检测问题还能起到一定的缓解作用。
    • 为了更好地学习这一标签,会将目标框的坐标先映射到网格的尺度上:ws=w/stride,hs=h/stride ,然后再做log处理

    t w = l o g ( w s ) t h = l o g ( h s ) t_w = log(w_s) \\ t_h = log(h_s) tw=log(ws)th=log(hs)

    • 在推理阶段,使用exp函数即可将预测恢复到正常的尺度上。
      w = e ( t w ) ∗ s t r i d e h = e ( t h ) ∗ s t r i d e w = e^{(t_w)}*stride \\ h = e^{(t_h)}*stride w=e(tw)strideh=e(th)stride

因此,改进后根据预测值反解边界框的公式如下:
c e n t e r x = ( g r i d x + c x ) × s t r i d e c e n t e r y = ( g r i d y + c y ) × s t r i d e w = e ( t w ) ∗ s t r i d e h = e ( t h ) ∗ s t r i d e center_x = (grid_x + c_x)×stride \\ center_y = (grid_y + c_y)×stride \\ w = e^{(t_w)}*stride \\ h = e^{(t_h)}*stride centerx=(gridx+cx)×stridecentery=(gridy+cy)×stridew=e(tw)strideh=e(th)stride

1.2 反解边界框代码实现

前向推理过程中,我们通过yoloV1网络得到置信度、分类以及回归的预测值。然后,对其进行一些调整,方便后续处理。

    # RT-ODLab/models/detectors/yolov1/yolov1.py  @torch.no_grad()def inference(self, x):# 测试阶段的前向推理代码# 主干网络feat = self.backbone(x)# 颈部网络feat = self.neck(feat)# 检测头cls_feat, reg_feat = self.head(feat)# 预测层obj_pred = self.obj_pred(cls_feat)cls_pred = self.cls_pred(cls_feat)reg_pred = self.reg_pred(reg_feat)fmp_size = obj_pred.shape[-2:]# 对 pred 的size做一些view调整,便于后续的处理# [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)# 测试时,笔者默认batch是1,# 因此,我们不需要用batch这个维度,用[0]将其取走。obj_pred = obj_pred[0]       # [H*W, 1]cls_pred = cls_pred[0]       # [H*W, NC]reg_pred = reg_pred[0]       # [H*W, 4]# 每个边界框的得分scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid())# 解算边界框, 并归一化边界框: [H*W, 4]bboxes = self.decode_boxes(reg_pred, fmp_size)......

然后,我们通过回归参数,反解边界框。要想反解边界框,首先,我们需要一个由grid_x,grid_y组成的矩阵G。

    # RT-ODLab/models/detectors/yolov1/yolov1.py  def create_grid(self, fmp_size):""" 用于生成G矩阵,其中每个元素都是特征图上的像素坐标。"""# 特征图的宽和高ws, hs = fmp_size# 生成网格的x坐标和y坐标grid_y, grid_x = torch.meshgrid([torch.arange(hs), torch.arange(ws)])# 将xy两部分的坐标拼起来:[H, W, 2]grid_xy = torch.stack([grid_x, grid_y], dim=-1).float()# [H, W, 2] -> [HW, 2] -> [HW, 2]grid_xy = grid_xy.view(-1, 2).to(self.device)return grid_xy

不了解torch.meshgrid()函数的可以参考:

np.meshgrid()和torch.meshgrid()函数解析

然后,我们按照改进后的公式,得到边界框中心坐标以及宽高,最后转换为(xmin,ymin,xmax,ymax)的格式。

    # RT-ODLab/models/detectors/yolov1/yolov1.py  def decode_boxes(self, pred, fmp_size):"""将txtytwth转换为常用的x1y1x2y2形式。pred:回归预测参数fmp_size:特征图宽和高"""# 生成网格坐标矩阵grid_cell = self.create_grid(fmp_size)# 计算预测边界框的中心点坐标和宽高pred_ctr = (torch.sigmoid(pred[..., :2]) + grid_cell) * self.stridepred_wh = torch.exp(pred[..., 2:]) * self.stride# 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式pred_x1y1 = pred_ctr - pred_wh * 0.5pred_x2y2 = pred_ctr + pred_wh * 0.5pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)return pred_box

2、后处理

反解边界框后,我们会遇到两个问题:

  • 一些边界框的score过低,我们需要剔除。
  • 边界框有很多冗余,即多个box检测到了同一个物体,而我们对于每一个物体只需要一个框就够了。因此,我们有必要去剔除掉多余的结果(通过非极大值抑制nms)。

2.1 非极大值抑制

非极大值抑制的步骤:

  1. 首先挑选出得分score最高的框;

  2. 依次计算其他框与这个得分最高的框的 IoU ,超过给定 IoU 阈值的框舍掉。

  3. 对每一类别都进行以上的操作,直到无框可剔除为止。

非极大值抑制的python实现:

def nms(bboxes, scores):# 1、将xmin,ymin,xmax,ymax拿出xmin = bboxes[:, 0]ymin = bboxes[:, 1]xmax = bboxes[:, 2]ymax = bboxes[:, 3]# 2、置信度从大到小的下标order = scores.argsort()[::-1]print(order)# 3、每个bbox的面积area = (ymax - ymin) * (xmax - xmin)print(area)keep = [] # 保存框的索引while order.size > 0:i = order[0]keep.append(i)# 4、求当前置信度最大的bbox与其他bbox的iou# 4.1 计算交集的坐上角的点 和  右下角的点x1 = np.maximum(xmin[i], xmin[order[1:]])y1 = np.maximum(ymin[i], ymin[order[1:]])x2 = np.minimum(xmax[i], xmax[order[1:]])y2 = np.minimum(ymax[i], ymax[order[1:]])# 4.2 计算交集的宽和高w = np.maximum(1e-10, x2 - x1)h = np.maximum(1e-10, y2 - y1)# 4.3 计算iouinter = w * hiou = inter / (area[i] + area[order[1:]]  - inter)print('iou = ', iou)# 滤除超过nms阈值的检测框nms_thresh = 0.4inds = np.where(iou <= nms_thresh)[0]print(inds + 1)order = order[inds + 1]return keepif __name__ == '__main__':bboxes = np.asarray([[1, 1, 3, 3],[1, 1, 4, 4],[0, 0, 1.9, 1.9],[0, 0, 2, 2],]) * 100scores = np.asarray([0.6, 0.7, 0.9, 0.1])keep = nms(bboxes, scores)print(keep)print(bboxes[[2, 1]])
[2, 1]
[[  0.   0. 190. 190.][100. 100. 400. 400.]]

2.2 后处理代码实现

了解非极大值后,我们就可以进行后处理了。

    # RT-ODLab/models/detectors/yolov1/yolov1.py    def postprocess(self, bboxes, scores):"""后处理代码,包括阈值筛选和非极大值抑制1、滤掉低得分(边界框的score低于给定的阈值)的预测边界框;2、滤掉那些针对同一目标的冗余检测。Input:bboxes: [HxW, 4]scores: [HxW, num_classes]Output:bboxes: [N, 4]score:  [N,]labels: [N,]"""# 获取最大分数labels = np.argmax(scores, axis=1)scores = scores[(np.arange(scores.shape[0]), labels)]# threshold# 1、滤掉低得分(边界框的score低于给定的阈值)的预测边界框;keep = np.where(scores >= self.conf_thresh)bboxes = bboxes[keep]scores = scores[keep]labels = labels[keep]# nms# 2、滤掉那些针对同一目标的冗余检测。scores, labels, bboxes = multiclass_nms(scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)return bboxes, scores, labels
# RT-ODLab/utils/misc.py# ---------------------------- NMS ----------------------------
## basic NMS
def nms(bboxes, scores, nms_thresh):""""Pure Python NMS."""x1 = bboxes[:, 0]  #xminy1 = bboxes[:, 1]  #yminx2 = bboxes[:, 2]  #xmaxy2 = bboxes[:, 3]  #ymaxareas = (x2 - x1) * (y2 - y1)order = scores.argsort()[::-1]keep = []while order.size > 0:i = order[0]keep.append(i)# compute iouxx1 = np.maximum(x1[i], x1[order[1:]])yy1 = np.maximum(y1[i], y1[order[1:]])xx2 = np.minimum(x2[i], x2[order[1:]])yy2 = np.minimum(y2[i], y2[order[1:]])w = np.maximum(1e-10, xx2 - xx1)h = np.maximum(1e-10, yy2 - yy1)inter = w * hiou = inter / (areas[i] + areas[order[1:]] - inter + 1e-14)#reserve all the boundingbox whose ovr less than threshinds = np.where(iou <= nms_thresh)[0]order = order[inds + 1]return keep## class-agnostic NMS
def multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh):# nms# 在所有的检测结果上执行的,不会考虑类别的差异keep = nms(bboxes, scores, nms_thresh)scores = scores[keep]labels = labels[keep]bboxes = bboxes[keep]return scores, labels, bboxes## class-aware NMS 
def multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes):# nms# 逐类别地去做NMS操作,不同类别之间的检测不会相互影响keep = np.zeros(len(bboxes), dtype=np.int32)for i in range(num_classes):inds = np.where(labels == i)[0]if len(inds) == 0:continuec_bboxes = bboxes[inds]c_scores = scores[inds]c_keep = nms(c_bboxes, c_scores, nms_thresh)keep[inds[c_keep]] = 1keep = np.where(keep > 0)scores = scores[keep]labels = labels[keep]bboxes = bboxes[keep]return scores, labels, bboxes## multi-class NMS 
def multiclass_nms(scores, labels, bboxes, nms_thresh, num_classes, class_agnostic=False):if class_agnostic:return multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh)else:return multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes)

如此,yolov1的推理过程就已经介绍完毕。

接下来,在训练过程中,我们需要改进损失函数,训练过程中,如何确定正负样本呢?

这篇关于经典目标检测YOLO系列(一)复现YOLOV1(2)反解边界框及后处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/547496

相关文章

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景