基于图搜索的自动驾驶规划算法 - BFS,Dijstra,A*

2023-12-27 13:45

本文主要是介绍基于图搜索的自动驾驶规划算法 - BFS,Dijstra,A*,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文将讲解BFS,Dijstra,A*,动态规划的算法原理,不正之处望读者指正,希望有兴趣的读者能在评论区提出一些这些算法的面试考点,共同学习,一起进步

0 图论基础

图有三种:无向图、有向图、带权重的图
无向图
Alt有向图
Alt

带权重的图
Alt

1 BFS

广度优先搜索算法
利用队列queue数据结构实现:先进先出
在这里插入图片描述
算法流程(伪代码):

BFS(G, start, goal):let Q be queue;Q.push(start);mark start as visited;while (!Q.empty()){v = Q.front();Q.pop();if (v is the goal) return v;for all neighbours n of v in GQ.push(n);n->parent = v;mark n as visited;}

BFS总结:
(1)相同探索所有的方向
(2)如果所有边权重为1,那么用BFS搜索出来的路径是cost最优的
(3)在不同的场景中,不能保证所有的边权重为1,对于这些场景,BFS受限

2 Dijstra

核心思想:
(1)相比BFS,Dijstra维护一个新变量g(n),g(n)表示从起始节点到当前节点的累积成本
(2)从openset(Min-priority queue)中访问累积成本g最低的节点

算法流程(伪代码):

Dijstra(G, start, goal):let open_list be priority_queue;open_list.push(start, 0);g[start] = 0;while (!open_list.empty()){current = open_list.pop();mark current as visited;if (current is the goal) return current;for (all unvisited neightbours next of current in G){next_cost = g[current] + cost(current, next);if (next is not in open_list)open_list.push(next, next_cost);else {if (g[next] > next_cost)g[next] = next_cost;}}}

优点:
(1)Dijstra算法能找到从起始节点到图上所有其他节点的最短路径
(2)Dijstra算法满足最优性
缺点:每次都会从open_list寻找代价最少的节点,但是并不知道终点在哪,如果用这个算法做图中特定两个点的最短路径,是比较低效的

3 A*算法

A*算法手撕版本见手撕A算法(详解A算法)

核心思想:

(1)相比Dijstra,A*将目标点的成本估计为启发式信息以提高效率
(2)启发式函数h(n):表示从节点n到目标的估计成本
(3)评估每个节点的成本函数:f(n)=g(n)+h(n)
(4)从open_list选择f-score最低的节点,而不是Dijstra算法中的g-score

算法流程(伪代码):
Astar(G, start, goal):let open_list be priority_queue;g[start] = 0;f[start] = g[start] + h[start];open_list.push(start, f[start]);while (!open_list.empty()){current = open_list.pop();mark current as visited;if (current is the goal) return current;for all unvisited neighbours next of current in Gnext_cost = g[current] + cost(current, next);if (next is not in open_list)open_list.push(next, next_cost + h[next]);else{if (g[next] > next_cost) {g[next] = next_cost;f[next] = next_cost + h[next];}}}
启发式函数设计

在路径搜索过程中,没有唯一启发函数设计原则,需要根据特定的任务来设计,如果最优性和距离相关,则可以计算节点之间的直线距离来估计

三种常用的距离:
起点: ( p 1 , p 2 ) (p_1, p_2) (p1,p2) 终点: ( q 1 , q 2 ) (q_1, q_2) (q1,q2)
(1)Euclidian distance
d ( p , q ) = ( q 1 − p 1 ) 2 + ( q 2 − p 2 ) 2 d(p,q)=\sqrt{(q_1-p_1)^2+(q_2-p_2)^2} d(p,q)=(q1p1)2+(q2p2)2
(2)Manhattan distance
d ( p , q ) = ∣ q 1 − p 1 ∣ + ∣ q 2 − p 2 ∣ d(p,q)=|q_1 - p_1|+|q_2 - p_2| d(p,q)=q1p1+q2p2
(3)Great circle distance
Alt
△ σ = a r c c o s ( s i n ϕ 1 s i n ϕ 2 + c o s ϕ 1 c o s ϕ 2 c o s ( △ λ ) ) \bigtriangleup \sigma =arccos(sin\phi _1sin\phi_2+cos\phi_1cos\phi_2cos(\bigtriangleup\lambda )) σ=arccos(sinϕ1sinϕ2+cosϕ1cosϕ2cos(λ))

d = r △ σ d = r\bigtriangleup \sigma d=rσ

最优性

启发式函数 h ( n ) < c o s t ( n , g o a l ) h(n)<cost(n,goal) h(n)<cost(n,goal)
只要启发式函数提供了小于实际成本的估计,A*将始终找到最优路径,并且通常比Dijstra快
在这里插入图片描述
实际上A->B->D是最短路径
因为B的启发式函数高估了对目标的成本

这种高估导致搜索算法相信节点C总成本低于节点B,使得节点C在节点B之前访问,导致结果不是最优路径

在gridmap中如何设计启发式函数
在这里插入图片描述

使用8连接,曼哈顿距离启发式高估了成本
欧几里得距离总是可以接受

A*算法的精度和效率
在这里插入图片描述

(1) h ( n ) = 0 h(n)=0 h(n)=0:A退化为Dijstra
(2) h ( n ) < c o s t ( n , g o a l ) h(n)<cost(n,goal) h(n)<cost(n,goal):A
满足最优性,效率比Dijstra更高
(3) h ( n ) = c o s t ( n , g o a l ) h(n)=cost(n,goal) h(n)=cost(n,goal):A满足最优性,并且有最高的效率
(4) h ( n ) > c o s t ( n , g o a l ) h(n)>cost(n,goal) h(n)>cost(n,goal):A
不满足最优性,高估实际成本

BFS、Dijstra、A*总结:

BFSDijstraA*
(1)BFS算法会朝着周围等价扩展(1)相比BFS,Dijstra倾向于累积成本最小化,不是平等地搜索所有可能的路径,能在加权图中满足最优性(1)A*是Dijstra的修改,添加了启发式函数h(n)提高搜索效率
(2)如果每条边权重为1,BFS搜索出来的path也是最优解(2)如果每条边权重为1,BFS=Dijstra(3)启发式函数的设计会影响效率和准确性

搜索算法可视化参考:http://qiao.github.io/PathFinding.js/visual/

4 动态规划

  1. 定义:

一种计算机编程方式,首先把算法问题分解为子问题,求解这些子问题,并把这些结果保存下来,然后优化子问题找到整个问题的最优解

  1. 动态规划的性质:

(1)最优子结构

面对一个大问题可以分解为一系列子问题。如果能找到每个小问题的最优解,并且能够把小问题拼成大的问题。这种问题就叫最优子结构

(2)重复的子问题

动态规划不会重新计算重复的子问题,会事先保存结果

在这里插入图片描述
在这里插入图片描述
3. 计算方法
(1)前向法
在这里插入图片描述

(2)逆向法
在这里插入图片描述

这篇关于基于图搜索的自动驾驶规划算法 - BFS,Dijstra,A*的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/543325

相关文章

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

Python Excel实现自动添加编号

《PythonExcel实现自动添加编号》这篇文章主要为大家详细介绍了如何使用Python在Excel中实现自动添加编号效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍简单的说,就是在Excel中有一列h=会有重复

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.