【candle】(2):使用hf-mirror镜像下载TheBloke/Llama-2-7B-GGML的q4_0.bin文件,并设置HF_HOME,example模块可以识别下载的模型

本文主要是介绍【candle】(2):使用hf-mirror镜像下载TheBloke/Llama-2-7B-GGML的q4_0.bin文件,并设置HF_HOME,example模块可以识别下载的模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1,视频演示地址

https://www.bilibili.com/video/BV1Dc41117wT/?vd_source=4b290247452adda4e56d84b659b0c8a2

【candle】(2):使用hf-mirror镜像下载TheBloke/Llama-2-7B-GGML的q4

2,安装rust到其他目录

默认的安装模式:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

https://forge.rust-lang.org/infra/other-installation-methods.html

https://static.rust-lang.org/dist/rust-1.74.1-x86_64-unknown-linux-gnu.tar.gz

wget https://static.rust-lang.org/dist/rust-1.74.1-x86_64-unknown-linux-gnu.tar.gztar -zxf rust-1.74.1-x86_64-unknown-linux-gnu.tar.gz
cd rust-1.74.1-x86_64-unknown-linux-gnu/./install.sh  --prefix=/root/autodl-tmp/rust --without=rust-docs

这样就可以将 rust 安装到其他目录了:
同时不要安装 rust-docs 有 700 多MB ,实在是没有用。

./install.sh --list-components# Available components* rustc
* rust-std-x86_64-unknown-linux-gnu
* rust-docs
* rust-docs-json-preview
* rust-demangler-preview
* cargo
* rustfmt-preview
* rls-preview
* rust-analyzer-preview
* llvm-tools-preview
* clippy-preview
* rust-analysis-x86_64-unknown-linux-gnu

然后执行安装即可:

./install.sh  --prefix=/root/autodl-tmp/rust --without=rust-docs# 安装完成,设置好 PATH 路径:export PATH=/root/autodl-tmp/rust/bin:$PATH
# 执行 rustc 就可以生效了:

在这里插入图片描述
可以执行 rust 命令了:
在这里插入图片描述

3,下载 candle 项目

#设置学术加速,不再区分不同地区# 设置hf 路径:
export HF_HOME=/root/autodl-tmp/hf_cache
# 下载项目
git clone https://github.com/huggingface/candle.gitcd candle
# 执行一个简单的demo
cargo run --example quantized

然后就是漫长的下载库:

  Downloaded ttf-parser v0.15.2Downloaded zerofrom v0.1.3Downloaded zstd-safe v6.0.6Downloaded anstream v0.6.5Downloaded approx v0.5.1Downloaded bitflags v1.3.2Downloaded bytemuck v1.14.0Downloaded bytes v1.5.0Downloaded wav v1.0.0
Downloading 81 crates, remaining bytes: 128.3 KB 

4,下载文件方法 huggingface_hub 使用镜像下载

pip3 install huggingface_hub

然后使用模型下载脚本:

download_model.py :

# 设置镜像
# export HF_ENDPOINT="https://hf-mirror.com"import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'from huggingface_hub import snapshot_download# 下载第一个模型
snapshot_download(repo_id="TheBloke/Llama-2-7B-GGML", allow_patterns=["llama-2-7b.ggmlv3.q4_0.bin"])# 下载第二个模型
snapshot_download(repo_id="hf-internal-testing/llama-tokenizer")
# 设置hf home 目录,防止下载到其他目录,磁盘满了。
export HF_HOME=/root/autodl-tmp/hf_cache
# 执行下载方法:
python3 download_model.py

下载速度还可以:

Fetching 1 files:   0%|                                                                                      | 0/1 [00:00<?, ?it/s]
llama-2-7b.ggmlv3.q4_0.bin:  32%|███████████████████▍                                         | 1.21G/3.79G [04:54<10:59, 3.92MB/s]

还可以使用 https://aliendao.cn/#/ 进行加速下载。

5,然后就可以运行模型了

cargo run --example quantized Compiling candle-examples v0.3.1 (/root/autodl-tmp/candle/candle-examples)Finished dev [unoptimized + debuginfo] target(s) in 7.87sRunning `target/debug/examples/quantized`
avx: true, neon: false, simd128: false, f16c: true
temp: 0.80 repeat-penalty: 1.10 repeat-last-n: 64
loaded 291 tensors (3.79GB) in 9.32s
params: HParams { n_vocab: 32000, n_embd: 4096, n_mult: 256, n_head: 32, n_layer: 32, n_rot: 128, ftype: 2 }
model built
My favorite theorem is 0 (
zero). It's just a random

在这里插入图片描述

3,运行yi-6b

cargo run --example yi --features cuda 
# 设置镜像
# export HF_ENDPOINT="https://hf-mirror.com"
# export HF_HOME=/root/autodl-tmp/hf_cacheimport os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
os.environ['HF_HOME'] = '/root/autodl-tmp/hf_cache'from huggingface_hub import snapshot_download
snapshot_download(repo_id="01-ai/Yi-6B")
Yi.svg: 980B [00:00, 1.76MB/s]                                                                      | 0/16 [00:00<?, ?it/s]
LICENSE: 17.4kB [00:00, 14.3MB/s]
config.json: 605B [00:00, 1.20MB/s]
generation_config.json: 132B [00:00, 43.9kB/s]
.gitattributes: 1.52kB [00:00, 1.27MB/s]/s]
md5: 184B [00:00, 377kB/s]██▎                                                               | 1/16 [00:00<00:11,  1.34it/s]
README.md: 24.8kB [00:00, 262kB/s]
model.safetensors.index.json: 23.9kB [00:00, 33.6MB/s]                                      | 3/16 [00:00<00:03,  3.96it/s]
pytorch_model.bin.index.json: 23.9kB [00:00, 34.6MB/s]
tokenizer_config.json: 320B [00:00, 453kB/s]?B/s]
tokenizer.json: 3.56MB [00:00, 6.32MB/s]
tokenizer.model: 100%|████████████████████████████████████████████████████████████████| 1.03M/1.03M [00:00<00:00, 1.16MB/s]
pytorch_model-00001-of-00002.bin:   2%|| 168M/9.94G [00:10<09:14, 17.6MB/s]
pytorch_model-00001-of-00002.bin:   4%|█▉                                              | 409M/9.94G [00:25<09:49, 16.2MB/s]
model-00001-of-00002.safetensors:   4%|██                                              | 430M/9.94G [00:26<09:15, 17.1MB/s]
model-00002-of-00002.safetensors:  20%|█████████▍                                      | 430M/2.18G [00:25<01:37, 17.9MB/s]
pytorch_model-00002-of-00002.bin:  19%|█████████▏                                      | 419M/2.18G [00:25<01:40, 17.5MB/s]

TheBloke/Yi-34B-Chat-AWQ · Hugging Face
还有34b模型,但是没有测试。

4,总结

使用candle 可以运行大模型了,可以运行 yi-6b的模型,使用镜像下载成功。
candle目前支持的模型还不多,但是未来会慢慢流行起来的。
提前做好学习准备。

这篇关于【candle】(2):使用hf-mirror镜像下载TheBloke/Llama-2-7B-GGML的q4_0.bin文件,并设置HF_HOME,example模块可以识别下载的模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/535087

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学