【candle】(2):使用hf-mirror镜像下载TheBloke/Llama-2-7B-GGML的q4_0.bin文件,并设置HF_HOME,example模块可以识别下载的模型

本文主要是介绍【candle】(2):使用hf-mirror镜像下载TheBloke/Llama-2-7B-GGML的q4_0.bin文件,并设置HF_HOME,example模块可以识别下载的模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1,视频演示地址

https://www.bilibili.com/video/BV1Dc41117wT/?vd_source=4b290247452adda4e56d84b659b0c8a2

【candle】(2):使用hf-mirror镜像下载TheBloke/Llama-2-7B-GGML的q4

2,安装rust到其他目录

默认的安装模式:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

https://forge.rust-lang.org/infra/other-installation-methods.html

https://static.rust-lang.org/dist/rust-1.74.1-x86_64-unknown-linux-gnu.tar.gz

wget https://static.rust-lang.org/dist/rust-1.74.1-x86_64-unknown-linux-gnu.tar.gztar -zxf rust-1.74.1-x86_64-unknown-linux-gnu.tar.gz
cd rust-1.74.1-x86_64-unknown-linux-gnu/./install.sh  --prefix=/root/autodl-tmp/rust --without=rust-docs

这样就可以将 rust 安装到其他目录了:
同时不要安装 rust-docs 有 700 多MB ,实在是没有用。

./install.sh --list-components# Available components* rustc
* rust-std-x86_64-unknown-linux-gnu
* rust-docs
* rust-docs-json-preview
* rust-demangler-preview
* cargo
* rustfmt-preview
* rls-preview
* rust-analyzer-preview
* llvm-tools-preview
* clippy-preview
* rust-analysis-x86_64-unknown-linux-gnu

然后执行安装即可:

./install.sh  --prefix=/root/autodl-tmp/rust --without=rust-docs# 安装完成,设置好 PATH 路径:export PATH=/root/autodl-tmp/rust/bin:$PATH
# 执行 rustc 就可以生效了:

在这里插入图片描述
可以执行 rust 命令了:
在这里插入图片描述

3,下载 candle 项目

#设置学术加速,不再区分不同地区# 设置hf 路径:
export HF_HOME=/root/autodl-tmp/hf_cache
# 下载项目
git clone https://github.com/huggingface/candle.gitcd candle
# 执行一个简单的demo
cargo run --example quantized

然后就是漫长的下载库:

  Downloaded ttf-parser v0.15.2Downloaded zerofrom v0.1.3Downloaded zstd-safe v6.0.6Downloaded anstream v0.6.5Downloaded approx v0.5.1Downloaded bitflags v1.3.2Downloaded bytemuck v1.14.0Downloaded bytes v1.5.0Downloaded wav v1.0.0
Downloading 81 crates, remaining bytes: 128.3 KB 

4,下载文件方法 huggingface_hub 使用镜像下载

pip3 install huggingface_hub

然后使用模型下载脚本:

download_model.py :

# 设置镜像
# export HF_ENDPOINT="https://hf-mirror.com"import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'from huggingface_hub import snapshot_download# 下载第一个模型
snapshot_download(repo_id="TheBloke/Llama-2-7B-GGML", allow_patterns=["llama-2-7b.ggmlv3.q4_0.bin"])# 下载第二个模型
snapshot_download(repo_id="hf-internal-testing/llama-tokenizer")
# 设置hf home 目录,防止下载到其他目录,磁盘满了。
export HF_HOME=/root/autodl-tmp/hf_cache
# 执行下载方法:
python3 download_model.py

下载速度还可以:

Fetching 1 files:   0%|                                                                                      | 0/1 [00:00<?, ?it/s]
llama-2-7b.ggmlv3.q4_0.bin:  32%|███████████████████▍                                         | 1.21G/3.79G [04:54<10:59, 3.92MB/s]

还可以使用 https://aliendao.cn/#/ 进行加速下载。

5,然后就可以运行模型了

cargo run --example quantized Compiling candle-examples v0.3.1 (/root/autodl-tmp/candle/candle-examples)Finished dev [unoptimized + debuginfo] target(s) in 7.87sRunning `target/debug/examples/quantized`
avx: true, neon: false, simd128: false, f16c: true
temp: 0.80 repeat-penalty: 1.10 repeat-last-n: 64
loaded 291 tensors (3.79GB) in 9.32s
params: HParams { n_vocab: 32000, n_embd: 4096, n_mult: 256, n_head: 32, n_layer: 32, n_rot: 128, ftype: 2 }
model built
My favorite theorem is 0 (
zero). It's just a random

在这里插入图片描述

3,运行yi-6b

cargo run --example yi --features cuda 
# 设置镜像
# export HF_ENDPOINT="https://hf-mirror.com"
# export HF_HOME=/root/autodl-tmp/hf_cacheimport os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
os.environ['HF_HOME'] = '/root/autodl-tmp/hf_cache'from huggingface_hub import snapshot_download
snapshot_download(repo_id="01-ai/Yi-6B")
Yi.svg: 980B [00:00, 1.76MB/s]                                                                      | 0/16 [00:00<?, ?it/s]
LICENSE: 17.4kB [00:00, 14.3MB/s]
config.json: 605B [00:00, 1.20MB/s]
generation_config.json: 132B [00:00, 43.9kB/s]
.gitattributes: 1.52kB [00:00, 1.27MB/s]/s]
md5: 184B [00:00, 377kB/s]██▎                                                               | 1/16 [00:00<00:11,  1.34it/s]
README.md: 24.8kB [00:00, 262kB/s]
model.safetensors.index.json: 23.9kB [00:00, 33.6MB/s]                                      | 3/16 [00:00<00:03,  3.96it/s]
pytorch_model.bin.index.json: 23.9kB [00:00, 34.6MB/s]
tokenizer_config.json: 320B [00:00, 453kB/s]?B/s]
tokenizer.json: 3.56MB [00:00, 6.32MB/s]
tokenizer.model: 100%|████████████████████████████████████████████████████████████████| 1.03M/1.03M [00:00<00:00, 1.16MB/s]
pytorch_model-00001-of-00002.bin:   2%|| 168M/9.94G [00:10<09:14, 17.6MB/s]
pytorch_model-00001-of-00002.bin:   4%|█▉                                              | 409M/9.94G [00:25<09:49, 16.2MB/s]
model-00001-of-00002.safetensors:   4%|██                                              | 430M/9.94G [00:26<09:15, 17.1MB/s]
model-00002-of-00002.safetensors:  20%|█████████▍                                      | 430M/2.18G [00:25<01:37, 17.9MB/s]
pytorch_model-00002-of-00002.bin:  19%|█████████▏                                      | 419M/2.18G [00:25<01:40, 17.5MB/s]

TheBloke/Yi-34B-Chat-AWQ · Hugging Face
还有34b模型,但是没有测试。

4,总结

使用candle 可以运行大模型了,可以运行 yi-6b的模型,使用镜像下载成功。
candle目前支持的模型还不多,但是未来会慢慢流行起来的。
提前做好学习准备。

这篇关于【candle】(2):使用hf-mirror镜像下载TheBloke/Llama-2-7B-GGML的q4_0.bin文件,并设置HF_HOME,example模块可以识别下载的模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/535087

相关文章

Qt spdlog日志模块的使用详解

《Qtspdlog日志模块的使用详解》在Qt应用程序开发中,良好的日志系统至关重要,本文将介绍如何使用spdlog1.5.0创建满足以下要求的日志系统,感兴趣的朋友一起看看吧... 目录版本摘要例子logmanager.cpp文件main.cpp文件版本spdlog版本:1.5.0采用1.5.0版本主要

Java中使用Hutool进行AES加密解密的方法举例

《Java中使用Hutool进行AES加密解密的方法举例》AES是一种对称加密,所谓对称加密就是加密与解密使用的秘钥是一个,下面:本文主要介绍Java中使用Hutool进行AES加密解密的相关资料... 目录前言一、Hutool简介与引入1.1 Hutool简介1.2 引入Hutool二、AES加密解密基础

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

Pydantic中Optional 和Union类型的使用

《Pydantic中Optional和Union类型的使用》本文主要介绍了Pydantic中Optional和Union类型的使用,这两者在处理可选字段和多类型字段时尤为重要,文中通过示例代码介绍的... 目录简介Optional 类型Union 类型Optional 和 Union 的组合总结简介Pyd

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo