Transformer-XL: 非固定长度上下文的注意力语言模型(Attentive Language Models Beyond a Fixed-Length Context)

本文主要是介绍Transformer-XL: 非固定长度上下文的注意力语言模型(Attentive Language Models Beyond a Fixed-Length Context),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • Vanilla Transformer Language Models
    • Segment-Level Recurrence with State Reuse
    • Relative Positional Encodings

Reference
1. Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
2. Transformer-XL: Unleashing the Potential of Attention Models
3. Transformer-XL介绍

代码基于tensorlfow2.3实现,仓库地址:https://github.com/dwdb/transformer-xl


Transformers潜在地学习长期依赖,但受到上下文固定长度限制,当处理序列长度超过固定长度时,会出现以下问题:

  • 训练阶段,需将输入文本分割成不同分段,不同分段独立训练,由于分段未考虑语义边界,可能造成模型缺乏上下文信息学习分段的完整表示,模型不易优化,这种现象称为上下文碎片问题;
  • 预测阶段,每次移动一个输入单元,引入大量重复计算,预测效率低;

Transformer-XL使用两种技术: 循环分段相对位置编码,克服vanilla Transformers的缺陷,并解决上下文碎片问题。使用循环分段机制,在处理当前分段时,重用之前分段的隐状态(缓存),可不是从头计算新分段的隐状态,不同分段之间不再独立,解决了上下文碎片的问题。使用相对位置编码,而非绝对位置编码,避免利用之前分段隐状态造成的时序混乱问题。

实验结果表明,Transformer-XL在学习上下文依赖上,比RNNs网络长0.8倍、比vanilla Transformers网络长4.5倍,Transformer-XL是首个在字和词级别上均优于RNNs的使用自我注意力的模型。


Vanilla Transformer Language Models

使用Transformer或者self-attention的语言模型,最核心问题是怎样把任意长、具有上下文信息的序列编码为固定长度的向量表示。有限的计算资源下,无法处理较长序列,可行地做法是将长序列分割成数个固定长度序列,各分段独立训练,忽略各分段间的语义关系,随意分割会造成上下文碎片。


Segment-Level Recurrence with State Reuse

训练阶段,缓存一定长度的之前片段的各层隐状态向量,在处理新分段时,缓存向量作为新分段的扩展上下文重用,使得模型可以学习长期依赖,以避免学习上下文碎片。

对于两个连续分段 s τ = [ x τ , 1 , ⋯ , x τ , L ] s_{\tau}=[x_{\tau,1},\cdots,x_{\tau,L}] sτ=[xτ,1,,xτ,L] s τ + 1 = [ x τ + 1 , 1 , ⋯ , x τ + 1 , L ] s_{\tau+1}=[x_{\tau+1,1},\cdots,x_{\tau+1,L}] sτ+1=[xτ+1,1,,xτ+1,L] s τ s_\tau sτ在第 n n n层的隐状态为 h τ n ∈ R L × d \bm h_{\tau}^n\in\R^{L\times d} hτnRL×d,其中 d d d是隐状态向量维度,则
h ~ τ + 1 n − 1 = [ SG ( h τ n − 1 ) ∘ h τ + 1 n − 1 ] q τ + 1 n , k τ + 1 n , v τ + 1 n = h τ + 1 n − 1 W q ⊤ , h ~ τ + 1 n − 1 W k ⊤ , h ~ τ + 1 n − 1 W v ⊤ h τ + 1 n = Transformer-Layer ( q τ + 1 n , k τ + 1 n , v τ + 1 n ) \begin{aligned} &\tilde\bm h_{\tau+1}^{n-1}=[\text{SG}(\bm h_{\tau}^{n-1})\circ\bm h_{\tau+1}^{n-1}]\\[1ex] &\bm q_{\tau+1}^n,\bm k_{\tau+1}^n,\bm v_{\tau+1}^n=\bm h_{\tau+1}^{n-1}W_q^\top,\tilde\bm h_{\tau+1}^{n-1}W_k^\top,\tilde\bm h_{\tau+1}^{n-1}W_v^\top\\[1ex] &\bm h_{\tau+1}^n=\text{Transformer-Layer}(\bm q_{\tau+1}^n,\bm k_{\tau+1}^n,\bm v_{\tau+1}^n) \end{aligned} h~τ+1n1=[SG(hτn1)hτ+1n1]qτ+1n,kτ+1n,vτ+1n=hτ+1n1Wq,h~τ+1n1Wk,h~τ+1n1Wvhτ+1n=Transformer-Layer(qτ+1n,kτ+1n,vτ+1n)

式中函数 SG ( ⋅ ) \text{SG}(\cdot) SG()表示不计算梯度, [ h u ∘ h v ] [\bm h_u\circ \bm h_v] [huhv]表示序列长度方向拼接两个隐藏状态序列。

循环分段状态重用与标准Tranformer最大的不同在于,利用当前分段的 q \bm q q向量,以及之前分段和当前分段的 k \bm k k v \bm v v向量,计算当前分段的Transformer层输出,使得当前分段输出考虑到之前分段信息(self-attention注意之前分段)。

从图二左图中可看出,在训练阶段当仅利用前一个分段信息时,两个分段的不同层的隐状态 h τ + 1 n \bm h_{\tau+1}^n hτ+1n h τ n − 1 \bm h_{\tau}^{n-1} hτn1具有依赖关系,为保持时序信息,需考虑相对位置信息,下节介绍。

循环分段机制除能够学习长期依赖、解决上下文碎片化之外,对预测的性能上也有较大提高。模型通过学习转换矩阵得到固定嵌入,而不是直接学习嵌入,使得预测阶段可以学习更长期的依赖。。此外,在当GPU内存允许条件下,也可利用之前多个分段信息。

Relative Positional Encodings

在使用之前隐状态时,如何保证连贯的位置信息? 传统的Transformer中,使用绝对位置编码 U ∈ R L max ⁡ × d U\in\R^{L_{\max}\times d} URLmax×d,其第 i i i行表示分段中的第 i i i个绝对位置的编码向量, L max ⁡ L_{\max} Lmax表示最大编码长度,实际是直接将词向量和绝对位置编码向量按元素相加作为实际输入,各分段的处理方式相同。显然,不同分段同时参与运算时,会造成时序混乱

避免时序混乱的思想是仅在隐状态中引入相对位置信息。位置嵌入目的是给予模型各输入点的时序线索或偏差,以决定如何收集信息,因此,可向每一层的注意力分数中注入相对时序信息,取代将位置编码直接加入初始词向量。

举例来说,对于计算查询向量 q τ , i \bm q_{\tau,i} qτ,i在键向量 k τ , ≤ i \bm k_{\tau,\leq i} kτ,i的注意力,我们不需知道 k τ , j \bm k_{\tau,j} kτ,j在时序中绝对位置,只需要知道其相对 q τ , i \bm q_{\tau,i} qτ,i的时序偏差(相对查询的位置偏差)即可,如 i − j i-j ij

因此,创建一系列相对位置编码向量 R ∈ R L max ⁡ × d R\in\R^{L_{\max}\times d} RRLmax×d(正弦信号),其中 R i R_i Ri表示两位置相对距离为 i i i对应的编码向量,通过在注意力分数中动态地引入相对距离,查询向量可通过相对距离的不同区分 x τ , j x_{\tau,j} xτ,j x τ + 1 , j x_{\tau+1,j} xτ+1,j

标准Transformer使用绝对位置编码,同一分段中查询向量 q i \bm q_i qi对键向量 k j \bm k_j kj的注意力分数为
A i , j abs = W q ( E x i + U i ) ⋅ W k ( E x j + U j ) = E x i ⊤ W q ⊤ W k E x j ⏟ ( a ) + E x i ⊤ W q ⊤ W k U j ⏟ ( b ) + U i ⊤ W q ⊤ W k E x j ⏟ ( c ) + U i ⊤ W q ⊤ W k U j ⏟ ( d ) \begin{aligned} A_{i,j}^{\text{abs}} &=W_q(E_{x_i}+U_i)\cdot W_k(E_{x_j}+U_j)\\[1ex] &=\underbrace{E_{x_i}^\top W_q^\top W_kE_{x_j}}_{(a)} +\underbrace{E_{x_i}^\top W_q^\top W_kU_j}_{(b)} +\underbrace{U_i^\top W_q^\top W_kE_{x_j}}_{(c)} +\underbrace{U_i^\top W_q^\top W_kU_j}_{(d)} \end{aligned} Ai,jabs=Wq(Exi+Ui)Wk(Exj+Uj)=(a) ExiWqWkExj+(b) ExiWqWkUj+(c) UiWqWkExj+(d) UiWqWkUj

使用相对位置编码,则同一分段中查询向量 q i \bm q_i qi对键向量 k j \bm k_j kj的注意力分数为
A i , j rel = E x i ⊤ W q ⊤ W k , E E x j ⏟ ( a ) + E x i ⊤ W q ⊤ W k , R R i − j ⏟ ( b ) + u ⊤ W k , E E x j ⏟ ( c ) + v ⊤ W k , R R i − j ⏟ ( d ) \begin{aligned} A_{i,j}^{\text{rel}} &=\underbrace{E_{x_i}^\top W_q^\top W_{k,E}E_{x_j}}_{(a)} +\underbrace{E_{x_i}^\top W_q^\top W_{k,R}R_{i-j}}_{(b)} +\underbrace{u^\top W_{k,E}E_{x_j}}_{(c)} +\underbrace{v^\top W_{k,R}R_{i-j}}_{(d)} \end{aligned} Ai,jrel=(a) ExiWqWk,EExj+(b) ExiWqWk,RRij+(c) uWk,EExj+(d) vWk,RRij
相对位置编码的改动在于:

  • 将用于计算键向量的绝对位置编码 U j U_j Uj,替换为不需要学习的正弦的相对位置编码 R i − j R_{i-j} Rij,使得扩展上下文长度在预测阶段可大于训练阶段;
  • 引入参数 u u u取代 ( c ) (c) (c)项中的 W q U i W_qU_i WqUi,此时 ( c ) (c) (c)项仅与内容有关。为使序列中任意位置对其它任意位置的注意力偏差相同,引入参数 v v v取代 ( d ) (d) (d)项中的 W q U i W_qU_i WqUi,此时 ( d ) (d) (d)项仅与相对位置有关;
  • 使用权重矩阵 W k , E W_{k,E} Wk,E生成基于内容的键向量(右乘词向量), W k , R W_{k,R} Wk,R生成基于位置的键向量(右乘相对位置向量);
  • 四项意义: ( a ) (a) (a)项为内容表示, ( b ) (b) (b)项为依赖位置的内容偏差, ( c ) (c) (c)项为全局内容偏差, ( d ) (d) (d)项为全局位置偏差;

Transformer-XL的整体架构表示为
h ~ τ n − 1 = [ SG ( m τ n − 1 ) ∘ h τ n − 1 ] q τ n , k τ n , v τ n = h τ n − 1 W q n ⊤ , h ~ τ n − 1 W k , E n ⊤ , h ~ τ n − 1 W v n ⊤ A τ , i , j n = q τ , i n ⊤ k τ , j n + q τ , i n ⊤ W k , R n R i − j + u ⊤ k τ , j + v ⊤ W k , R n R i − j a τ n = Masked-Softmax ( A τ n ) v τ n o τ n = LayerNorm ( Linear ( a τ n ) + h τ n − 1 ) h τ n = Positionwise-Feed-Forward ( o τ n ) \begin{aligned} \tilde\bm h_{\tau}^{n-1}&=[\text{SG}(\bm m_{\tau}^{n-1})\circ\bm h_{\tau}^{n-1}]\\[1ex] \bm q_{\tau}^n,\bm k_{\tau}^n,\bm v_{\tau}^n&=\bm h_{\tau}^{n-1}{W_q^n}^\top,\tilde\bm h_{\tau}^{n-1}{W_{k,E}^n}^\top,\tilde\bm h_{\tau}^{n-1}{W_v^n}^\top\\[1ex] A_{\tau,i,j}^n&={\bm q_{\tau,i}^n}^\top \bm k_{\tau,j}^n+{\bm q_{\tau,i}^n}^\top W_{k,R}^nR_{i-j}+u^\top \bm k_{\tau,j}+v^\top W_{k,R}^nR_{i-j}\\[1ex] \bm a_{\tau}^n&=\text{Masked-Softmax}(A_{\tau}^n)\bm v_{\tau}^n\\[1ex] \bm o_\tau^n&=\text{LayerNorm}(\text{Linear}(\bm a_\tau^n)+\bm h_\tau^{n-1})\\[1ex] \bm h_\tau^n&=\text{Positionwise-Feed-Forward}(\bm o_\tau^n) \end{aligned} h~τn1qτn,kτn,vτnAτ,i,jnaτnoτnhτn=[SG(mτn1)hτn1]=hτn1Wqn,h~τn1Wk,En,h~τn1Wvn=qτ,inkτ,jn+qτ,inWk,RnRij+ukτ,j+vWk,RnRij=Masked-Softmax(Aτn)vτn=LayerNorm(Linear(aτn)+hτn1)=Positionwise-Feed-Forward(oτn)
式中,计算 A τ n A_{\tau}^n Aτn,意味着需对所有位置对 ( i , j ) (i,j) (i,j)计算 W k , R n R i − j W_{k,R}^nR_{i-j} Wk,RnRij,时间复杂度 O ( n 2 ) O(n^2) O(n2),优化后可降至 O ( n ) O(n) O(n)

这篇关于Transformer-XL: 非固定长度上下文的注意力语言模型(Attentive Language Models Beyond a Fixed-Length Context)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/534340

相关文章

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

Python在固定文件夹批量创建固定后缀的文件(方法详解)

《Python在固定文件夹批量创建固定后缀的文件(方法详解)》文章讲述了如何使用Python批量创建后缀为.md的文件夹,生成100个,代码中需要修改的路径、前缀和后缀名,并提供了注意事项和代码示例,... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5.

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt