tensorflow2中自定义损失、传递loss函数字典/compile(optimizer=Adam(lr = lr), loss= lambda y_true, y_pred: y_pred)理解

本文主要是介绍tensorflow2中自定义损失、传递loss函数字典/compile(optimizer=Adam(lr = lr), loss= lambda y_true, y_pred: y_pred)理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在阅读yolov3代码的时候有下面这样一样代码:
model.compile(optimizer=Adam(lr = lr), loss={'yolo_loss': lambda y_true, y_pred: y_pred}),这行代码在网上有人进行解释过,但是都是看的云里雾里,一般使用compile的时候我们都是直接传递的一个函数对象,这里竟然传递的是一个字典,对此很是不解。


经过大量的饿查阅别人写的博客:最后在这篇博客中得到了答案的启发:链接,这篇文章 写的很好,大家可以去看看。


我在上面文章的基础上,会尽量使用简单的语言来描述这个函数的作用,并给出一个例子帮助大家进行理解。


因为这里是在compile模型,因此,要理解其原委,我们还需要到其模型中去看起所以然,进入模型定义中,我们会发现有下面这样一个loss的层定义:

    model_loss  = Lambda(get_yolo_loss(input_shape, len(model_body.output), num_classes), output_shape    = (1, ), name            = 'yolo_loss',)([*model_body.output, *y_true])

而且我们会发现,这里面给该Lambda层起了一个名字:yolo_loss,是的。你没有看错,就是和前面compile里面的loss的键值一样,这是巧合吗?然而当我将这个name进行修改成其他名字的时候,发现无法进行训练,因此,我们可以确定,这个name就是在comple中进行引用的键值。间接性的将,上面的loss引用的是这里的这个Lambda层。但是否是这样呢?我们在上面的那篇博客中可以得到答案,的确是这样

为了进一步的验证该猜想,我们自定义一个简单的层,然后将最后一层当做Loss层进行处理,及最后一层的输出是一个数,这个数既代表预测的结果,也用来表示函数的损失。

在这里我们定义一个简单的LSTM层来进行说明:

from tensorflow.keras.layers import *
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Input, Lambda
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input,Embedding,LSTM,Dense
import tensorflow as tfword_size = 128
nb_features = 10
nb_classes = 10
encode_size = 64
margin = 0.1embedding = Embedding(nb_features,word_size) # 对单词进行编码
lstm_encoder = LSTM(encode_size) # LSTM层进行定义def encode(input): # 定义一个函数,进行层的传播return lstm_encoder(embedding(input))q_input = Input(shape=(100,)) # 定义一个输入
q_encoded = Dense(encode_size)(q_encoded)  # 将LSTM层的输出放入全连接层进行整合loss = Lambda(lambda x: K.relu(0.001+x[0][:,1:2]+100),name="test_loss")([q_encoded]) # 随便写了一个算法 让第一个数据*0.001+100作为输出,然后让Dense层的输入通过该Lambda层,这一层也是最后一层,模型的整体组成请看下面model_train = Model(inputs=[q_input], outputs=loss) # 定义模型model_train.compile(optimizer='adam', loss={'test_loss':lambda y_true,y_pred: y_pred})# 对模型进行编译,这里也是本篇文章的重点,loss={'test_loss':lambda #y_true,y_pred: y_pred} 表示loss函数引用的是test_loss这个层,后面的两个#参数是tensorflow2中对loss进行重定义的标准输入,在这里表示直接输出预测#值。这样锁可能不太好理解,我们还可以将上面的compile换成下面这个形式:#model_train.compile(optimizer='adam', loss=lambda y_true,y_pred: y_pred)#这样是不是很好理解了呢?loss和之前的传递自定义函数是不是很向呢?想想在我们传递自定义loss函数的时候是怎么传递的,直接将一个函数对象赋给loss,是的,#这里的Lambda就是一个匿名对象,至于后面的参数这是标准的tensorflow自定义#loss必须要传递的链各个值: y_true,y_pred,不好理解的地方在于,这样不是直#接返回的y_predect嘛,是的,在Lambda函数中,我们要求函数直接返回预测值,#也就是这里的函数输出,这这个输出就是最后一层的输出,因此,通过这样定义,#我们即将最后一层当做输出,也将最后一层当做`loss`损失进行优化。t1 = tf.range(10) # 随便定义一个数据进行预测
y = tf.range(10) #  宿便定义一个输出,因为这里我们后面要进行优化,因此这个值随便定义。这里定义y只是为了瞒住fit的时候需要一个y值而已model_train.fit([t1], y, epochs=10) # 进行训练p = model_train.predict([5]) # 预测5这个数的lossprint(p) # 打印p的值

模型的摘要:
在这里插入图片描述

训练的输出:
在这里插入图片描述
可以看到这里训练10步之后输出也即loss为99.57左右,那么可以猜想我们的预测下一个值的输出也应该在99.57左右,因为我们的输出即做预测值使用,也做Loss使用,那到底是不是这样呢?
预测输出:
在这里插入图片描述
可以看到,这和我们的猜想是一样的,也验证了我们上面的说法。

这篇关于tensorflow2中自定义损失、传递loss函数字典/compile(optimizer=Adam(lr = lr), loss= lambda y_true, y_pred: y_pred)理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/533795

相关文章

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

自定义类型:结构体(续)

目录 一. 结构体的内存对齐 1.1 为什么存在内存对齐? 1.2 修改默认对齐数 二. 结构体传参 三. 结构体实现位段 一. 结构体的内存对齐 在前面的文章里我们已经讲过一部分的内存对齐的知识,并举出了两个例子,我们再举出两个例子继续说明: struct S3{double a;int b;char c;};int mian(){printf("%zd\n",s

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数