本文主要是介绍爬虫工作量由小到大的思维转变---<第二十四章 Scrapy的`统计数据`收集stats collection>,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
前言:
前两篇是讲的数据诊断分析,还有一篇深挖`解决内存泄漏`的文章,目前我还没整理汇编出来;但是,想到分析问题的时候,忽然觉得`爬虫的数据统计`好像也挺重要;于是,心血来潮准备来插一篇这个------让大家对日常scrapy爬的数据,做到心里有数!不必自己去搅破脑汁捣腾日志,敲计算器了;
正文:
在 Scrapy 中,可以使用 Stats Collection(统计信息收集)来收集和获取有关爬虫运行过程中的统计信息。Stats Collection 提供了各种默认的统计指标,例如请求数量、下载时间和爬取成功数等。
当然,也可以使用其他的,例如:
MemoryStatsCollector:默认的统计收集器,将统计数据存储在内存中。
CsvStatsCollector:将统计数据保存为 CSV 格式的文件。
JsonLinesStatsCollector:将统计数据保存为 JSON Lines 格式的文件。
XmlStatsCollector:将统计数据保存为 XML 格式的文件。
DbStatsCollector:将统计数据保存到数据库中。
LogStatsCollector:通过日志输出统计数据。
-----这些其实都大同小异,我们就拿第一个来开刀!!
使用 Stats Collection 的步骤:
1. 在 Scrapy 项目的配置文件 `settings.py` 中启用 Stats Collection:
STATS_CLASS = 'scrapy.statscollectors.MemoryStatsCollector'
通过配置 `STATS_CLASS` 参数,可以选择不同的 Stats Collector。在示例中,我们使用了 `MemoryStatsCollector`,该 Collector 将统计信息存储在内存中。
2. 在 Scrapy 的爬虫代码中导入 `scrapy.stats`:
from scrapy import stats
3. 在爬虫代码中,可以使用 `stats` 对象来访问和处理统计信息。以下是一些常用的方法:
- - `stats.get_value(key, default=None)`:获取指定键名的统计值。如果指定的键名不存在,则返回提供的 `default` 值(默认为 `None`)。
- - `stats.inc_value(key, count=1)`:增加指定键名的统计值。`count` 参数可以指定增加的数量,默认为 1。
- - `stats.set_value(key, value)`:设置指定键名的统计值为给定的 `value`。
- - `stats.get_stats()`:返回当前所有统计信息的字典形式。
使用 Stats Collection:
from scrapy import Spiderfrom scrapy import statsclass MySpider(Spider):name = 'my_spider'start_urls = ['http://example.com']def parse(self, response):# 增加请求数量统计值self.stats.inc_value('request_count')# 获取当前请求数量的统计值request_count = self.stats.get_value('request_count', default=0)self.logger.info(f"Request Count: {request_count}")# 设置自定义统计值self.stats.set_value('custom_stat', 10)# 获取所有统计信息all_stats = self.stats.get_stats()self.logger.info(f"All Stats: {all_stats}")# ...其他处理代码...```
在上述示例中,在解析函数中使用 `stats` 对象进行统计值的增加、获取和设置操作,以及获取所有统计信息。可以根据需要进行自定义的统计值操作,从而监控和分析爬虫的运行情况。
ps:Stats Collection 默认收集的统计信息可能会消耗一定的内存,如果需要更复杂的统计需求,可以考虑使用第三方库或自定义 Stats Collector 进行更高级的统计处理。
深入:
当需要进行更高级的统计处理时,可以自定义 Stats Collector 来满足特定的需求。自定义 Stats Collector 可以用于收集、处理和保存统计数据,以便后续分析和可视化。
以下是自定义 Stats Collector 的步骤:
1. 创建一个自定义的 Stats Collector 类,继承自 `scrapy.statscollectors.StatsCollector` 类,并重写需要的方法。
通常情况下,需要实现 `__init__()`、`open_spider()`、`close_spider()` 和 `get_value()` 方法。
from scrapy.statscollectors import StatsCollectorclass CustomStatsCollector(StatsCollector):def __init__(self, crawler):super().__init__(crawler)# 初始化自定义的统计数据self.custom_stats = {}def open_spider(self, spider):super().open_spider(spider)# 初始化每个爬虫的自定义统计数据self.custom_stats[spider.name] = {}def close_spider(self, spider, reason):super().close_spider(spider, reason)# 在爬虫结束时处理自定义统计数据custom_stats_data = self.custom_stats[spider.name]# 进行进一步的处理或保存操作def get_value(self, key, default=None, spider=None):# 获取自定义统计数据的值if spider:return self.custom_stats[spider.name].get(key, default)return default
2. 在 Scrapy 项目的配置文件 `settings.py` 中配置自定义的 Stats Collector 类:
STATS_CLASS = 'your_project_name.custom_stats.CustomStatsCollector'
ps:`your_project_name` 需要替换为 Scrapy 项目的名称,以及其他必要的导入路径。
3. 使用自定义的 Stats Collector
在 Spider 类中,通过 `self.crawler.stats` 访问自定义的 Stats Collector 对象,并使用相应的方法进行统计值的获取、增加和设置。
from scrapy import Spiderclass MySpider(Spider):name = 'my_spider'start_urls = ['http://example.com']def parse(self, response):# 增加自定义统计值self.crawler.stats.inc_value('custom_stat', spider=self)# 获取自定义统计值custom_stat_value = self.crawler.stats.get_value('custom_stat', default=0, spider=self)self.logger.info(f"Custom Stat Value: {custom_stat_value}")# 设置自定义统计值self.crawler.stats.set_value('custom_stat', 10, spider=self)# ...其他处理代码...
创建一个自定义的 Stats Collector 类 `CustomStatsCollector`,并在 `open_spider()` 和 `close_spider()` 方法中进行自定义统计数据的初始化和处理。在 Spider 类中,使用 `self.crawler.stats` 访问自定义的 Stats Collector 对象,并用相应的方法进行自定义统计值的增加、获取和设置。
也可以根据具体需求在自定义 Stats Collector 类中添加其他统计方法和处理逻辑,并使用自定义统计数据进行进一步的分析和处理。
另一个案例:
统计每个爬虫访问 URL 的数量,并在爬虫结束时将统计数据保存到文件中。
import json
from scrapy.statscollectors import StatsCollectorclass CustomStatsCollector(StatsCollector):def __init__(self, crawler):super().__init__(crawler)# 初始化自定义统计数据self.custom_stats = {}def open_spider(self, spider):super().open_spider(spider)# 初始化每个爬虫的自定义统计数据self.custom_stats[spider.name] = {'url_count': 0}def close_spider(self, spider, reason):super().close_spider(spider, reason)# 在爬虫结束时处理自定义统计数据custom_stats_data = self.custom_stats[spider.name]# 保存自定义统计数据到文件with open(f'{spider.name}_stats.json', 'w') as file:json.dump(custom_stats_data, file)def inc_url_count(self, spider):# 增加 URL 数量统计值self.custom_stats[spider.name]['url_count'] += 1def get_url_count(self, spider):# 获取 URL 数量统计值return self.custom_stats[spider.name]['url_count']
在 Spider 类中,我们可以调用自定义 Stats Collector 的 `inc_url_count()` 方法来增加 URL 数量的统计值,并使用 `get_url_count()` 方法获取统计值。
from scrapy import Spiderclass MySpider(Spider):name = 'my_spider'start_urls = ['http://example.com']def parse(self, response):# 增加 URL 数量统计值self.crawler.stats.inc_url_count(self)# 获取 URL 数量统计值url_count = self.crawler.stats.get_url_count(self)self.logger.info(f"URL Count: {url_count}")# ...其他处理代码...
在这个案例中,我们定义了 `CustomStatsCollector` 类,用于统计每个爬虫访问的 URL 数量。使用 `inc_url_count()` 方法增加统计值,并使用 `get_url_count()` 方法获取统计结果。在爬虫结束时,自定义统计数据将被保存到以爬虫名为前缀的 JSON 文件中。
(可自行在此框架上修改,自己需要的业务逻辑)
这篇关于爬虫工作量由小到大的思维转变---<第二十四章 Scrapy的`统计数据`收集stats collection>的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!