浅谈PHP5中垃圾回收算法(Garbage Collection)的演化

2024-09-08 14:58

本文主要是介绍浅谈PHP5中垃圾回收算法(Garbage Collection)的演化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

PHP是一门托管型语言,在PHP编程中程序员不需要手工处理内存资源的分配与释放(使用C编写PHP或Zend扩展除外),这就意味着PHP本身实现了垃圾回收机制(Garbage Collection)。现在如果去PHP官方网站(php.net)可以看到,目前PHP5的两个分支版本PHP5.2和PHP5.3是分别更新的,这是因为许多项目仍然使用5.2版本的PHP,而5.3版本对5.2并不是完全兼容。PHP5.3在PHP5.2的基础上做了诸多改进,其中垃圾回收算法就属于一个比较大的改变。本文将分别讨论PHP5.2和PHP5.3的垃圾回收机制,并讨论这种演化和改进对于程序员编写PHP的影响以及要注意的问题。

PHP变量及关联内存对象的内部表示

垃圾回收说到底是对变量及其所关联内存对象的操作,所以在讨论PHP的垃圾回收机制之前,先简要介绍PHP中变量及其内存对象的内部表示(其C源代码中的表示)。

PHP官方文档中将PHP中的变量划分为两类:标量类型和复杂类型。标量类型包括布尔型、整型、浮点型和字符串;复杂类型包括数组、对象和资源;还有一个NULL比较特殊,它不划分为任何类型,而是单独成为一类。

所有这些类型,在PHP内部统一用一个叫做zval的结构表示,在PHP源代码中这个结构名称为“_zval_struct”。zval的具体定义在PHP源代码的“Zend/zend.h”文件中,下面是相关代码的摘录。

typedef union _zvalue_value {long lval;                  /* long value */double dval;                /* double value */struct {char *val;int len;} str;HashTable *ht;              /* hash table value */zend_object_value obj;
} zvalue_value;struct _zval_struct {/* Variable information */zvalue_value value;     /* value */zend_uint refcount__gc;zend_uchar type;    /* active type */zend_uchar is_ref__gc;
};

其中联合体“_zvalue_value”用于表示PHP中所有变量的值,这里之所以使用union,是因为一个zval在一个时刻只能表示一种类型的变量。可以看到_zvalue_value中只有5个字段,但是PHP中算上NULL有8种数据类型,那么PHP内部是如何用5个字段表示8种类型呢?这算是PHP设计比较巧妙的一个地方,它通过复用字段达到了减少字段的目的。例如,在PHP内部布尔型、整型及资源(只要存储资源的标识符即可)都是通过lval字段存储的;dval用于存储浮点型;str存储字符串;ht存储数组(注意PHP中的数组其实是哈希表);而obj存储对象类型;如果所有字段全部置为0或NULL则表示PHP中的NULL,这样就达到了用5个字段存储8种类型的值。

而当前zval中的value(value的类型即是_zvalue_value)到底表示那种类型,则由“_zval_struct”中的type确定。_zval_struct即是zval在C语言中的具体实现,每个zval表示一个变量的内存对象。除了value和type,可以看到_zval_struct中还有两个字段refcount__gc和is_ref__gc,从其后缀就可以断定这两个家伙与垃圾回收有关。没错,PHP的垃圾回收全靠这俩字段了。其中refcount__gc表示当前有几个变量引用此zval,而is_ref__gc表示当前zval是否被按引用引用,这话听起来很拗口,这和PHP中zval的“Write-On-Copy”机制有关,由于这个话题不是本文重点,因此这里不再详述,读者只需记住refcount__gc这个字段的作用即可。

PHP5.2中的垃圾回收算法——Reference Counting

PHP5.2中使用的内存回收算法是大名鼎鼎的Reference Counting,这个算法中文翻译叫做“引用计数”,其思想非常直观和简洁:为每个内存对象分配一个计数器,当一个内存对象建立时计数器初始化为1(因此此时总是有一个变量引用此对象),以后每有一个新变量引用此内存对象,则计数器加1,而每当减少一个引用此内存对象的变量则计数器减1,当垃圾回收机制运作的时候,将所有计数器为0的内存对象销毁并回收其占用的内存。而PHP中内存对象就是zval,而计数器就是refcount__gc。

例如下面一段PHP代码演示了PHP5.2计数器的工作原理(计数器值通过xdebug得到):

<?php$val1 = 100; //zval(val1).refcount_gc = 1;
$val2 = $val1; //zval(val1).refcount_gc = 2,zval(val2).refcount_gc = 2(因为是Write on copy,当前val2与val1共同引用一个zval)
$val2 = 200; //zval(val1).refcount_gc = 1,zval(val2).refcount_gc = 1(此处val2新建了一个zval)
unset($val1); //zval(val1).refcount_gc = 0($val1引用的zval再也不可用,会被GC回收)?>

Reference Counting简单直观,实现方便,但却存在一个致命的缺陷,就是容易造成内存泄露。很多朋友可能已经意识到了,如果存在循环引用,那么Reference Counting就可能导致内存泄露。例如下面的代码:

<?php$a = array();
$a[] = & $a;
unset($a);?>

这段代码首先建立了数组a,然后让a的第一个元素按引用指向a,这时a的zval的refcount就变为2,然后我们销毁变量a,此时a最初指向的zval的refcount为1,但是我们再也没有办法对其进行操作,因为其形成了一个循环自引用,如下图所示:

image

其中灰色部分表示已经不复存在。由于a之前指向的zval的refcount为1(被其HashTable的第一个元素引用),这个zval就不会被GC销毁,这部分内存就泄露了。

这里特别要指出的是,PHP是通过符号表(Symbol Table)存储变量符号的,全局有一个符号表,而每个复杂类型如数组或对象有自己的符号表,因此上面代码中,a和a[0]是两个符号,但是a储存在全局符号表中,而a[0]储存在数组本身的符号表中,且这里a和a[0]引用同一个zval(当然符号a后来被销毁了)。希望读者朋友注意分清符号(Symbol)的zval的关系。

在PHP只用于做动态页面脚本时,这种泄露也许不是很要紧,因为动态页面脚本的生命周期很短,PHP会保证当脚本执行完毕后,释放其所有资源。但是PHP发展到目前已经不仅仅用作动态页面脚本这么简单,如果将PHP用在生命周期较长的场景中,例如自动化测试脚本或deamon进程,那么经过多次循环后积累下来的内存泄露可能就会很严重。这并不是我在耸人听闻,我曾经实习过的一个公司就通过PHP写的deamon进程来与数据存储服务器交互。

由于Reference Counting的这个缺陷,PHP5.3改进了垃圾回收算法。

PHP5.3中的垃圾回收算法——Concurrent Cycle Collection in Reference Counted Systems

PHP5.3的垃圾回收算法仍然以引用计数为基础,但是不再是使用简单计数作为回收准则,而是使用了一种同步回收算法,这个算法由IBM的工程师在论文Concurrent Cycle Collection in Reference Counted Systems中提出。

这个算法可谓相当复杂,从论文29页的数量我想大家也能看出来,所以我不打算(也没有能力)完整论述此算法,有兴趣的朋友可以阅读上面的提到的论文(强烈推荐,这篇论文非常精彩)。

我在这里,只能大体描述一下此算法的基本思想。

首先PHP会分配一个固定大小的“根缓冲区”,这个缓冲区用于存放固定数量的zval,这个数量默认是10,000,如果需要修改则需要修改源代码Zend/zend_gc.c中的常量GC_ROOT_BUFFER_MAX_ENTRIES然后重新编译。

由上文我们可以知道,一个zval如果有引用,要么被全局符号表中的符号引用,要么被其它表示复杂类型的zval中的符号引用。因此在zval中存在一些可能根(root)。这里我们暂且不讨论PHP是如何发现这些可能根的,这是个很复杂的问题,总之PHP有办法发现这些可能根zval并将它们投入根缓冲区。

当根缓冲区满额时,PHP就会执行垃圾回收,此回收算法如下:

1、对每个根缓冲区中的根zval按照深度优先遍历算法遍历所有能遍历到的zval,并将每个zval的refcount减1,同时为了避免对同一zval多次减1(因为可能不同的根能遍历到同一个zval),每次对某个zval减1后就对其标记为“已减”。

2、再次对每个缓冲区中的根zval深度优先遍历,如果某个zval的refcount不为0,则对其加1,否则保持其为0。

3、清空根缓冲区中的所有根(注意是把这些zval从缓冲区中清除而不是销毁它们),然后销毁所有refcount为0的zval,并收回其内存。

如果不能完全理解也没有关系,只需记住PHP5.3的垃圾回收算法有以下几点特性:

1、并不是每次refcount减少时都进入回收周期,只有根缓冲区满额后在开始垃圾回收。

2、可以解决循环引用问题。

3、可以总将内存泄露保持在一个阈值以下。

PHP5.2与PHP5.3垃圾回收算法的性能比较

由于我目前条件所限,我就不重新设计试验了,而是直接引用PHP Manual中的实验,关于两者的性能比较请参考PHP Manual中的相关章节:http://www.php.net/manual/en/features.gc.performance-considerations.php。

首先是内存泄露试验,下面直接引用PHP Manual中的实验代码和试验结果图:

<?php
class Foo
{public $var = '3.1415962654';
}$baseMemory = memory_get_usage();for ( $i = 0; $i <= 100000; $i++ )
{$a = new Foo;$a->self = $a;if ( $i % 500 === 0 ){echo sprintf( '%8d: ', $i ), memory_get_usage() - $baseMemory, "\n";}
}
?>

PHP内存泄露试验


可以看到在可能引发累积性内存泄露的场景下,PHP5.2发生持续累积性内存泄露,而PHP5.3则总能将内存泄露控制在一个阈值以下(与根缓冲区大小有关)。

另外是关于性能方面的对比:

<?php
class Foo
{public $var = '3.1415962654';
}for ( $i = 0; $i <= 1000000; $i++ )
{$a = new Foo;$a->self = $a;
}echo memory_get_peak_usage(), "\n";
?>

这个脚本执行1000000次循环,使得延迟时间足够进行对比。

然后使用CLI方式分别在打开内存回收和关闭内存回收的的情况下运行此脚本:

time php -dzend.enable_gc=0 -dmemory_limit=-1 -n example2.php
# and
time php -dzend.enable_gc=1 -dmemory_limit=-1 -n example2.php

在我的机器环境下,运行时间分别为6.4s和7.2s,可以看到PHP5.3的垃圾回收机制会慢一些,但是影响并不大。

与垃圾回收算法相关的PHP配置

可以通过修改php.ini中的zend.enable_gc来打开或关闭PHP的垃圾回收机制,也可以通过调用gc_enable()或gc_disable()打开或关闭PHP的垃圾回收机制。在PHP5.3中即使关闭了垃圾回收机制,PHP仍然会记录可能根到根缓冲区,只是当根缓冲区满额时,PHP不会自动运行垃圾回收,当然,任何时候您都可以通过手工调用gc_collect_cycles()函数强制执行内存回收。

本文基于 署名-非商业性使用 3.0 许可协议发布,欢迎转载,演绎,但是必须保留本文的署名 张洋 (包含链接),且不得用于商业目的。如您有任何疑问或者授权方面的协商,请 与我联系


这篇关于浅谈PHP5中垃圾回收算法(Garbage Collection)的演化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148431

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

离心萃取机废旧磷酸铁锂电池回收工艺流程

在废旧磷酸铁锂电池的回收工艺流程中,离心萃取机主要应用于萃取除杂的步骤,以提高回收过程中有价金属(如锂)的纯度。以下是结合离心萃取机应用的废旧磷酸铁锂电池回收工艺流程: 电池拆解与预处理 拆解:将废旧磷酸铁锂电池进行拆解,分离出电池壳、正负极片、隔膜等部分。破碎与筛分:将正负极片进行破碎处理,并通过筛分将不同粒径的物料分开,以便后续处理。 浸出与溶解 浸出:采用适当的浸出工艺(如二段式逆

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int