项目2:使用Yolov5和deepsort实现车辆和行人目标跟踪,实时计算目标运动速度和加速度(有检测超速功能)

本文主要是介绍项目2:使用Yolov5和deepsort实现车辆和行人目标跟踪,实时计算目标运动速度和加速度(有检测超速功能),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目演示视频

项目获取地址及演示视频:https://www.7claw.com/51247.html

项目简介

本项目使用Yolov5+DeepSort实现车辆、行人跟踪,并实时统计各类别目标数量,以及测量目标运动速度、加速度,对于超速的车辆进行标记保存。

  • 项目支持对高分辨率的视频进行检测,可以使用滑动窗口检测,具体的做法就是按照指定的滑动步长以及窗口大小,对每一帧的图片进行切割,例如切割成512*512的大小的切片输入到模型中进行推理,然后对所有切片的推理结果进行合并,合并时需要再进行一次非极大值抑制,以去掉不同切片检测到的重叠框。
  • 本项目的预训练模型使用的是YOLOv5官方提供的yolov5s预训练权重,用户可以自行更换自己的模型权重文件。
  • 本项目可以指定需要检测的类别,并实时统计每一帧中各类别的目标数量。
  • 本项目可以实时统计各个目标的移动速度、加速度。
  • 对于超速的车辆,可以将其进行标记保存,便于交通部门的管理。
    在这里插入图片描述

主函数

if __name__ == '__main__':#Adding necessary input argumentsparser = argparse.ArgumentParser(description='test')parser.add_argument("--model_path", default="./weights/yolov5s.pt", type=str,help ='预训练模型的路径')parser.add_argument('--input_path',default='./mytest.mp4', type=str,help ='输入视频文件路径')parser.add_argument('--output_dir',default = './mytest', type=str,help='输出检测结果保存路径')parser.add_argument("--is_split",default=False, action="store_true",help="是否对视频的每一帧图片进行切割检测(自动合并)")parser.add_argument("--subsize",default=512, type=int, help="切割每一帧时指定的切片大小")parser.add_argument("--gap", default=100, type=int, help="滑动窗口的重叠部分的像素长度,值越大,滑动窗口步长越小")parser.add_argument("--num_process",default=8,type=int,help="使用的进程个数")parser.add_argument("--names", default=['bus', 'car', 'truck', "person"],type=list,help="需要检测的目标")parser.add_argument("--conf_thresh", default=0.2, type=float, help="合并切片时需要再次进行NMS去除重复框")parser.add_argument("--iou_thresh", default=0.4, type=float, help="合并切片时需要再次进行NMS去除重复框")parser.add_argument("--speed_thresh", default=10, type=int, help="设定车辆速度上限阈值,如果超过该阈值就会被记录下来, 单位是千米/小时,-1则表示关闭速度检测")parser.add_argument("--pro_speed_thresh", default=-1, type=int, help="设定车辆加速度上限阈值,如果超过该阈值就会被记录下来, 单位是米/平方秒,-1则表示关闭加速度检测")args = parser.parse_args()main(args)

主要函数

def update_tracker(args, target_detector, image, fps):new_faces = []allbboxes = []cls_idlist = []if args.is_split:# 首先将当前帧存入指定的临时文件夹中args.splitDir = os.path.join(args.output_dir,"splitDir")if not os.path.exists(args.splitDir):os.makedirs(args.splitDir)tmpdir = os.path.join(args.splitDir,"tmp")tmpdir2 = os.path.join(args.splitDir,"tmp_split")if not os.path.exists(tmpdir):os.makedirs(tmpdir)if not os.path.exists(tmpdir2):os.makedirs(tmpdir2)cv2.imwrite(os.path.join(tmpdir,"tmp.png"),image)split = splitbase(tmpdir,tmpdir2,gap=args.gap,subsize=args.subsize,num_process=args.num_process)split.splitdata(1) # 1表示不放缩原图进行裁剪for filename in os.listdir(tmpdir2):filepath = os.path.join(tmpdir2,filename) # tmp__1__0___0yshfit = int(filename.split("___")[1].split(".")[0])xshfit = int(filename.split("__")[2])img = cv2.imread(filepath)_, bboxes = target_detector.detect(img) # 检测器推理图片for x1, y1, x2, y2, cls_id, conf in bboxes:cls_idlist.append(cls_id)x1 += xshfity1 += yshfitx2 += xshfity2 += yshfitallbboxes.append([x1,y1,x2,y2,conf.cpu()])else:_, bboxes = target_detector.detect(image) # 检测器推理图片for x1, y1, x2, y2, cls_id, conf in bboxes:cls_idlist.append(cls_id)allbboxes.append([x1,y1,x2,y2,conf.cpu()])allbboxes = np.array(allbboxes)keep = list(range(allbboxes.shape[0])) if not args.is_split else py_cpu_nms(allbboxes,thresh=args.iou_thresh)bboxes = allbboxes[keep]            clss = []for idx in keep:clss.append(cls_idlist[idx])bbox_xywh = []confs = []for x1, y1, x2, y2, conf in bboxes:obj = [int((x1+x2)/2), int((y1+y2)/2),x2-x1, y2-y1]bbox_xywh.append(obj)confs.append(conf)# clss.append(cls_id)xywhs = torch.Tensor(bbox_xywh)confss = torch.Tensor(confs)outputs = deepsort.update(xywhs, confss, clss, image)bboxes2draw = []face_bboxes = []current_ids = []for value in list(outputs):x1, y1, x2, y2, cls_, track_id = valuebboxes2draw.append((x1, y1, x2, y2, cls_, track_id))current_ids.append(track_id)if cls_ == 'face':if not track_id in target_detector.faceTracker:target_detector.faceTracker[track_id] = 0face = image[y1:y2, x1:x2]new_faces.append((face, track_id))face_bboxes.append((x1, y1, x2, y2))# 计算每个目标的速度和加速度大小speed_list,speed_pro_list,speed_pro_change_list = get_speed_for_obj(bboxes2draw, fps)ids2delete = []for history_id in target_detector.faceTracker:if not history_id in current_ids:target_detector.faceTracker[history_id] -= 1if target_detector.faceTracker[history_id] < -5:ids2delete.append(history_id)for ids in ids2delete:target_detector.faceTracker.pop(ids)print('-[INFO] Delete track id:', ids)image = plot_bboxes(args, image, speed_list, speed_pro_list, speed_pro_change_list, bboxes2draw)return image, new_faces, face_bboxes

完整项目的获取方式请查看:https://www.7claw.com/51247.html

参考项目

https://github.com/ultralytics/yolov5

这篇关于项目2:使用Yolov5和deepsort实现车辆和行人目标跟踪,实时计算目标运动速度和加速度(有检测超速功能)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/526584

相关文章

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�