树莓派,opencv,Picamera2利用舵机云台追踪特定颜色对象(PID控制)

本文主要是介绍树莓派,opencv,Picamera2利用舵机云台追踪特定颜色对象(PID控制),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、需要准备的硬件

  1. Raspiberry 4b
  2. 两个SG90 180度舵机(注意舵机的角度,最好是180度且带限位的,切勿选360度舵机)
  3. 二自由度舵机云台(如下图)
  4. Raspiberry CSI 摄像头
    组装后的效果:
    组装后的效果

二、项目目标

追踪特定颜色的物体:
当物体移动时,摄像头通过控制两个伺服电机(分别是偏航和俯仰)把该物体放到视界的中心位置,我在这里追踪的是一支黄色的铅笔。

三、具体步骤

3.1 获得被追踪对象的颜色参数

  1. 提前准备一张图片(如下图),可以直接用树莓派的CSI摄像头拍摄并保存,具体方法可以在我之前的文章里找到

示例图片
2. 利用下面的代码并通过调整滑块(Trackbar)获得红色铅笔的HSV颜色参数,为接下来的颜色追踪做准备

import cv2
import json
path='crop_img.jpg'
cv2.namedWindow("TrackBar")def nothing(x):pass
#创建滑块控件
cv2.createTrackbar("Hue Min","TrackBar",0,179,nothing)
cv2.createTrackbar("Hue Max","TrackBar",179,179,nothing)
cv2.createTrackbar("Sat Min","TrackBar",0,255,nothing)
cv2.createTrackbar("Sat Max","TrackBar",255,255,nothing)
cv2.createTrackbar("Val Min","TrackBar",0,255,nothing)
cv2.createTrackbar("Val Max","TrackBar",255,255,nothing)while True:#读取目标图片image=cv2.imread(path)image=cv2.resize(image,(640,480))imgHSV=cv2.cvtColor(image,cv2.COLOR_BGR2HSV)hueLow=cv2.getTrackbarPos("Hue Min","TrackBar")hueHigh=cv2.getTrackbarPos("Hue Max","TrackBar")satLow=cv2.getTrackbarPos("Sat Min","TrackBar")satHigh=cv2.getTrackbarPos("Sat Max","TrackBar")valLow=cv2.getTrackbarPos("Val Min","TrackBar")valHigh=cv2.getTrackbarPos("Val Max","TrackBar")print(hueLow,hueHigh,satLow,satHigh,valLow,valHigh)#创建掩膜mask=cv2.inRange(imgHSV,(hueLow,satLow,valLow),(hueHigh,satHigh,valHigh))image=cv2.bitwise_and(image,image,mask=mask)#显示图像cv2.imshow('Origial',image)data={"hueLow":hueLow,"hueHigh":hueHigh,"satLow":satLow,"satHigh":satHigh,"valLow":valLow,"valHigh":valHigh,}mask_json=json.dumps(data)#按q键保存并退出if cv2.waitKey(1)==ord('q'):#将设置的参数保存到mask.json文件中with open('mask.json','w') as f:f.write(mask_json)break
cv2.destroyAllWindows() 
  1. 运行color_detection.py,并调整滑块(TrackBar)如下图,当然你的被追踪物体的颜色不同,参数也必然不同。
    在这里插入图片描述

  2. 这时你会发现,红色铅笔被显示出来,其它部分被掩膜遮挡,当你在frame窗口按下"q"键后,会自动生成mask.json文件保存相应参数设置
    被掩膜遮挡后的图片

3.2 目标追踪代码

  1. 新建color_tracking_pid.py文件,一级(pan)舵机的信号脚接在GPIO的19脚,二级(tilt)舵机的信号脚接在GPIO的16脚,在运行时可以通过调整main函数里的PID参数,代码如下:
# -*- coding: UTF-8 -*-
# 调用必需库
# color_tracking_pid.py
from multiprocessing import Manager, Process
from pid import PID
from colorcenter import Colorcenter
from servo import Servo
import time
import signal
import sys
import cv2
from picamera2 import Picamera2
import json# 定义舵机
pan = Servo(pin=19)
tilt = Servo(pin=16)# 定义图像尺寸
dispW = 1280
dispH = 720
# 读取掩模配置文件
with open('mask.json') as f:mask = json.load(f)def nothing(x):pass# 键盘终止函数def signal_handler(sig, frame):# 输出状态信息print("[INFO] You pressed `ctrl + c`! Exiting...")# 关闭舵机pan.stop()tilt.stop()# 退出sys.exit()def color_center(objX, objY, centerX, centerY):# ctrl+c退出进程signal.signal(signal.SIGINT, signal_handler)# 启动视频流并缓冲print("[INFO] waiting for camera to warm up...")cv2.startWindowThread()picam2 = Picamera2()picam2.preview_configuration.main.size = (dispW, dispH)picam2.preview_configuration.main.format = "RGB888"picam2.preview_configuration.controls.FrameRate = 10picam2.preview_configuration.align()picam2.configure("preview")picam2.start()fps = 0time.sleep(2.0)# 初始化色块探测器obj = Colorcenter(mask['hueLow'], mask['satLow'], mask['valLow'],mask['hueHigh'], mask['satHigh'], mask['valHigh'])# 进入循环while True:tStart = time.time()# 从视频流抓取图像并旋转frame = picam2.capture_array()frame = cv2.flip(frame, 1)# #在图像上显示帧率fps = 0cv2.putText(frame, "FPS: {:.2f}".format(fps), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 0, 225), 3)# 找到图像中心(H, W) = frame.shape[:2]centerX.value = W // 2centerY.value = H // 2# 画出图像中心点cv2.circle(frame, (centerX.value, centerY.value), 5, (0, 0, 255), -1)# 找到色块objectLoc = obj.update(frame, (centerX.value, centerY.value))((objX.value, objY.value), rect) = objectLoc# 绘制色块外界矩形if rect is not None:(x, y, w, h) = rectcv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 3)fX = int(x + (w / 2.0))fY = int(y + (h / 2.0))cv2.circle(frame, (fX, fY), 5, (0, 0, 255), -1)cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 3)# 在色块中心和视窗中心画的条连线cv2.line(frame, (centerX.value, centerY.value),(fX, fY), (0, 255, 0), 2)# 显示图像tEnd = time.time()loopTime = tEnd-tStartfps = .9*fps + .1*(1/loopTime)cv2.imshow("Pan-Tilt Face Tracking", frame)cv2.waitKey(1)def pid_process(output, p, i, d, objCoord, centerCoord):# ctrl+c退出进程signal.signal(signal.SIGINT, signal_handler)# 创建一个PID类的对象并初始化p = PID(p.value, i.value, d.value)p.initialize()# 进入循环while True:# 计算误差error = centerCoord.value - objCoord.value# 更新输出值,当error小于50时,误差设为0,以避免云台不停运行。if abs(error) < 50:error = 0output.value = p.update(error)def set_servos(panAngle, tiltAngle):# ctrl+c退出进程signal.signal(signal.SIGINT, signal_handler)# 进入循环while True:# 偏角变号yaw = -1 * panAngle.valuepitch = -1 * tiltAngle.value# 设置舵机角度。pan.set_angle(yaw)tilt.set_angle(pitch)# 启动主程序
if __name__ == "__main__":# 启动多进程变量管理with Manager() as manager:  # 相当于manager=Manager(),with as 语句操作上下文管理器(context manager),它能够帮助我们自动分配并且释放资源。# 舵机角度置零pan.set_angle(0)tilt.set_angle(0)# 为图像中心坐标赋初值centerX = manager.Value("i", 0)  # "i"即为整型integercenterY = manager.Value("i", 0)# 为人脸中心坐标赋初值objX = manager.Value("i", 0)objY = manager.Value("i", 0)# panAngle和tiltAngle分别是两个舵机的PID控制输出量panAngle = manager.Value("i", 0)tiltAngle = manager.Value("i", 0)# 设置一级舵机的PID参数panP = manager.Value("f", 0.015)  # "f"即为浮点型floatpanI = manager.Value("f", 0.01)panD = manager.Value("f", 0.0008)# 设置二级舵机的PID参数tiltP = manager.Value("f", 0.025)tiltI = manager.Value("f", 0.01)tiltD = manager.Value("f", 0.008)# 创建4个独立进程# 1. objectCenter  - 探测人脸# 2. panning       - 对一级舵机进行PID控制,控制偏航角# 3. tilting       - 对二级舵机进行PID控制,控制俯仰角# 4. setServos     - 根据PID控制的输出驱动舵机processObjectCenter = Process(target=color_center, args=(objX, objY, centerX, centerY))processPanning = Process(target=pid_process, args=(panAngle, panP, panI, panD, objX, centerX))processTilting = Process(target=pid_process, args=(tiltAngle, tiltP, tiltI, tiltD, objY, centerY))processSetServos = Process(target=set_servos, args=(panAngle, tiltAngle))# 开启4个进程processObjectCenter.start()processPanning.start()processTilting.start()processSetServos.start()# 添加4个进程processObjectCenter.join()processPanning.join()processTilting.join()processSetServos.join()
  1. 上述代码中的from servo import Servo导入servo,这个库是没有的,我们要手动创建这个库,在object_tracking.py所在的目录下新建servo.py文件,复制下面的代码到文件中
#!/usr/bin/env python3
import pigpio
from time import sleep
# Start the pigpiod daemon
import subprocess
result = None
status = 1
for x in range(3):p = subprocess.Popen('sudo pigpiod', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)result = p.stdout.read().decode('utf-8')status = p.poll()if status == 0:breaksleep(0.2)
if status != 0:print(status, result)
'''
> Use the DMA PWM of the pigpio library to drive the servo
> Map the servo angle (0 ~ 180 degree) to (-90 ~ 90 degree)'''class Servo():MAX_PW = 1250  # 0.5/20*100MIN_PW = 250 # 2.5/20*100_freq = 50 # 50 Hz, 20msdef __init__(self, pin, min_angle=-90, max_angle=90):self.pi = pigpio.pi()self.pin = pin self.pi.set_PWM_frequency(self.pin, self._freq)self.pi.set_PWM_range(self.pin, 10000)      self.angle = 0self.max_angle = max_angleself.min_angle = min_angleself.pi.set_PWM_dutycycle(self.pin, 0)def set_angle(self, angle):if angle > self.max_angle:angle = self.max_angleelif angle < self.min_angle:angle = self.min_angleself.angle = angleduty = self.map(angle, -90, 90, 250, 1250)self.pi.set_PWM_dutycycle(self.pin, duty)def get_angle(self):return self.angledef stop(self):self.pi.set_PWM_dutycycle(self.pin, 0)self.pi.stop()# will be called automatically when the object is deleted# def __del__(self):#     passdef map(self, x, in_min, in_max, out_min, out_max):return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_minif __name__ =='__main__':from vilib import Vilib# Vilib.camera_start(vflip=True,hflip=True) # Vilib.display(local=True,web=True)pan = Servo(pin=13, max_angle=90, min_angle=-90)tilt = Servo(pin=12, max_angle=30, min_angle=-90)panAngle = 0tiltAngle = 0pan.set_angle(panAngle)tilt.set_angle(tiltAngle)sleep(1)while True:for angle in range(0, 90, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(90, -90, -1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(-90, 0, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)

. 在树莓派中运行该文件,运行前确认

  1. 运行color_tracking_pid.py,移动黄色铅笔,摄像头就会自动追踪该对象

这篇关于树莓派,opencv,Picamera2利用舵机云台追踪特定颜色对象(PID控制)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/522433

相关文章

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

Java第二阶段---09类和对象---第三节 构造方法

第三节 构造方法 1.概念 构造方法是一种特殊的方法,主要用于创建对象以及完成对象的属性初始化操作。构造方法不能被对象调用。 2.语法 //[]中内容可有可无 访问修饰符 类名([参数列表]){ } 3.示例 public class Car {     //车特征(属性)     public String name;//车名   可以直接拿来用 说明它有初始值     pu

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

控制反转 的种类

之前对控制反转的定义和解释都不是很清晰。最近翻书发现在《Pro Spring 5》(免费电子版在文章最后)有一段非常不错的解释。记录一下,有道翻译贴出来方便查看。如有请直接跳过中文,看后面的原文。 控制反转的类型 控制反转的类型您可能想知道为什么有两种类型的IoC,以及为什么这些类型被进一步划分为不同的实现。这个问题似乎没有明确的答案;当然,不同的类型提供了一定程度的灵活性,但

深入解析秒杀业务中的核心问题 —— 从并发控制到事务管理

深入解析秒杀业务中的核心问题 —— 从并发控制到事务管理 秒杀系统是应对高并发、高压力下的典型业务场景,涉及到并发控制、库存管理、事务管理等多个关键技术点。本文将深入剖析秒杀商品业务中常见的几个核心问题,包括 AOP 事务管理、同步锁机制、乐观锁、CAS 操作,以及用户限购策略。通过这些技术的结合,确保秒杀系统在高并发场景下的稳定性和一致性。 1. AOP 代理对象与事务管理 在秒杀商品

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段