信号与线性系统翻转课堂笔记4——连续LTI系统的微分方程模型与求解

本文主要是介绍信号与线性系统翻转课堂笔记4——连续LTI系统的微分方程模型与求解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

信号与线性系统翻转课堂笔记4——连续LTI系统的微分方程模型与求解

The Flipped Classroom4 of Signals and Linear Systems

对应教材:《信号与线性系统分析(第五版)》高等教育出版社,吴大正著

一、要点

(1)连续LTI系统的微分方程模型及其经典解,了解齐次解+特解的微分方程求解方法;
(2)系统响应的分解:掌握自由(固有)响应/强迫响应、瞬态响应/稳态响应、零输入响应/零状态响应的概念,能够熟练完成系统响应的分解;
(3,重点)0-和0+初始值问题,了解系统初始状态在0时刻产生突变的原因,熟练掌握0+初始值的求解方法;系统微分方程的算子表示法;
(4,重点)系统零输入响应和零状态响应的分别求解,熟练掌握求解方法。

二、问题与解答

1、系统自由响应为什么又被称为固有响应,这种时域响应的模态(随时间的变化规律)主要取决于什么?它与系统外加的输入激励有没有关系?预备训练一的RLC电路,C1取两种不同值的情况下,所得到系统微分方程的特征根有什么不同(列出系统微分方程并求出其特征根)?这种不同对于系统的自由响应模态有何影响?二阶电路(如RLC电路)的过阻尼、欠阻尼、临界阻尼、无阻尼分别对应于特征根的何种情形?

2、试分析以下几个论断的正误:①零输入响应一定是自由响应;②自由响应一定是零输入响应;③零状态响应一定是强迫响应;④零状态响应包括自由响应和强迫响应。

3、为什么“微分方程等号右端含有冲激函数及其各阶导数时,响应y(t)及其各阶导数由0-到0+的瞬间将发生跃变”(教材p45),这反映了冲激或者冲激偶所具有的何种特性?

4、求解教材课后习题2.2(4),据此总结求0-到0+跃变的方法和步骤,特别注意与教材例2.1-3、2.1-4进行比较,说明如何确定等号右端冲激的阶次与等号左端y(t)的最高阶次的对应关系。

5、求解教材课后习题2.4(2),其中零状态响应分别用常规方法(教材例2.1-5方法)和微分特性(教材例2.1-6方法)这两种方法求解,并分别指出全响应中的自由响应/强迫响应、稳态响应/暂态响应。

6、动态系统的时域响应,可以理解为系统输出跟随输入指令,从一种状态到另一种状态的转换(例如数字电路中0、1电平的转换)。对于实际的物理系统来说,这种转换总是需要花费一定的时间的(转换不可能瞬时完成,需要一个过渡过程),而不能突变(思考:前面第3个讨论题所分析的0-到0+跃变,为什么在实际物理系统中不可能发生?)。针对预备训练一的RLC电路在方波输入激励下的响应(输出),从输出反应的速度、一个稳态到另一个稳态所用时间、输出过冲(超调)量大小等几个方面,比较分析电路工作于欠阻尼、过阻尼这两种状态,其过渡过程各自的特点。

1、系统的自由响应

系统自由响应为什么又被称为固有响应,这种时域响应的模态(随时间的变化规律)主要取决于什么?它与系统外加的输入激励有没有关系?(第1问)预备训练一的RLC电路,C1取两种不同值的情况下,所得到系统微分方程的特征根有什么不同(列出系统微分方程并求出其特征根)?这种不同对于系统的自由响应模态有何影响?(第2问)二阶电路(如RLC电路)的过阻尼、欠阻尼、临界阻尼、无阻尼分别对应于特征根的何种情形?(第3问)


(1)动态电路的完全响应中,已由初始条件确定待定系数k的微分方程通解部分,称为电路系统的自由响应。它的函数形式由电路系统本身结构决定,与外加激励无关,所以也称为固有响应。
(2)
在这里插入图片描述

在这里插入图片描述

(3)
在这里插入图片描述

2、各类响应的关系

试分析以下几个论断的正误:①零输入响应一定是自由响应;②自由响应一定是零输入响应;③零状态响应一定是强迫响应;④零状态响应包括自由响应和强迫响应。


(1)对
(2)错
(3)错
(4)对
(自由响应=固有响应)
在这里插入图片描述

3、冲激函数的特性

为什么“微分方程等号右端含有冲激函数及其各阶导数时,响应y(t)及其各阶导数由0-到0+的瞬间将发生跃变”(教材p45),这反映了冲激或者冲激偶所具有的何种特性?


0-是零输入时的初始状态,初始值是由系统的储能决定的;0+是加了输入后的初始状态,初始值受储能与激励的双重影响。
作用时间无穷小,反映了冲激或者冲激偶的瞬时特性。

4、初值求解问题

求解教材课后习题2.2(4),据此总结求0-到0+跃变的方法和步骤,特别注意与教材例2.1-3、2.1-4进行比较,说明如何确定等号右端冲激的阶次与等号左端y(t)的最高阶次的对应关系。


在这里插入图片描述

在这里插入图片描述
等号右端冲激函数的最高阶导数阶次与等号左端y(t)的最高导数阶次相等。
系统中从0-到0+有无跳变取决于微分方程右端是否包含冲激函数及其各阶导数,如果包含即发生了跳变,用冲激函数匹配法求出0+状态,冲激函数匹配法是根据t=0时刻微分方程左右两端的冲激函数及其各阶导数应该平衡等。
1、找最高阶,右端δ(t)最高阶对应左端最高阶。
2、由高到低列式子,直到出现阶跃信号u(t)。
3、把第二步列的式子带入到微分方程,系统进行匹配。
4、找出阶数对应的跳变值,r(k)(0+)=r(k)(0-)+跳变值。

5、零输入响应、零状态响应与全响应求解问题

求解教材课后习题2.4(2),其中零状态响应分别用常规方法(教材例2.1-5方法)和微分特性(教材例2.1-6方法)这两种方法求解,并分别指出全响应中的自由响应/强迫响应、稳态响应/暂态响应。


在这里插入图片描述
零状态响应用常规方法求解:
在这里插入图片描述
在这里插入图片描述
零状态响应部分用微分特性求解:

在这里插入图片描述

6、实际物理系统的响应过渡过程

动态系统的时域响应,可以理解为系统输出跟随输入指令,从一种状态到另一种状态的转换(例如数字电路中0、1电平的转换)。对于实际的物理系统来说,这种转换总是需要花费一定的时间的(转换不可能瞬时完成,需要一个过渡过程),而不能突变(思考:前面第3个讨论题所分析的0-到0+跃变,为什么在实际物理系统中不可能发生?(第一问))。针对预备训练一的RLC电路在方波输入激励下的响应(输出),从输出反应的速度、一个稳态到另一个稳态所用时间、输出过冲(超调)量大小等几个方面,比较分析电路工作于欠阻尼、过阻尼这两种状态,其过渡过程各自的特点。(第二问)
(1)从0-到0+是一种理想化的数学模型,现实中无法产生,因为需要满足冲激信号幅度无穷大,瞬时功率无穷大,变化速度无穷大。
(2)
一个系统受初扰动后不再受外界激励,因受到阻力造成能量损失而位移峰值渐减的振动称为阻尼振动。

欠阻尼:如果负载阻抗大于传输线的特性阻抗,那么负载端多余的能量就会反射回源端,由于负载端没有吸收全部能量,故称这种情况为欠阻尼。
输出反应的速度快、一个稳态到另一个稳态所用时间长、输出过冲(超调)量大。

过阻尼:如果负载阻抗小于传输线的特性阻抗,那么负载试图消耗比当前源端提供的能量更多的能量,故反射回来通知源端输送更多的能量,故称这种情况为过阻尼。
输出反应的速度慢、一个稳态到另一个稳态所用时间短、输出过冲(超调)量小。

三、反思总结

暂无

这篇关于信号与线性系统翻转课堂笔记4——连续LTI系统的微分方程模型与求解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507898

相关文章

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Debian如何查看系统版本? 7种轻松查看Debian版本信息的实用方法

《Debian如何查看系统版本?7种轻松查看Debian版本信息的实用方法》Debian是一个广泛使用的Linux发行版,用户有时需要查看其版本信息以进行系统管理、故障排除或兼容性检查,在Debia... 作为最受欢迎的 linux 发行版之一,Debian 的版本信息在日常使用和系统维护中起着至关重要的作