使用opencv的aruco库进行位姿估计(得到的是旋转矩阵与平移矩阵)

2023-12-18 05:32

本文主要是介绍使用opencv的aruco库进行位姿估计(得到的是旋转矩阵与平移矩阵),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里面很重要的一点就是说了:使用estimatePoseSingleMarkers估计Marker的位姿,得到的即是即是R和t,R和t应该就是旋转矩阵与平移矩阵。

https://blog.csdn.net/sinat_16643223/article/details/112912961

https://blog.csdn.net/sinat_16643223/article/details/114262109

转载自:https://blog.csdn.net/weixin_43053387/article/details/86301547

使用opencv的aruco库进行位姿估计

share space 2019-01-11 15:02:27 5143 收藏 18

分类专栏: opencv 文章标签: opencv aruco 位姿估计 3D定位 无人机着落

最后发布:2019-01-11 15:02:27首次发布:2019-01-11 15:02:27

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/weixin_43053387/article/details/86301547

版权

1、姿态估计在许多计算机视觉应用中非常重要:机器人导航,增强现实等等。该过程基于查找真实环境中的点与其2D图像投影之间的对应关系。这通常是一个困难的步骤,因此通常使用合成或基准标记使其更容易。

最流行的方法之一是使用二元方形基准标记。这些标记的主要好处是单个标记提供足够的对应(其四个角)以获得相机姿势。此外,内部二进制编码使它们特别健壮,允许应用错误检测和校正技术的可能性。
aruco功能包括在:

#include < opencv2 / aruco.hpp >

aruco模块基于ArUco库,这是一个用于检测由RafaelMuñoz和Sergio Garrido开发的方形基准标记的流行库:
因为aruco是在opencv_contrib中,所以读者在安装时,要注意是否安装了opencv_contrib,笔者安装过程在前面的博客已经写出:

https://blog.csdn.net/weixin_43053387/article/details/85806344

环境搭建都没有问题,下面我们根据官方文档,进行相关调用就行了,先给出网址:

https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html

界面是这样的:
在这里插入图片描述
笔者就是根据这个一步一步调用,得到我们的旋转矩阵与平移矩阵,下面给出小编在qt下编译的代码:
程序大体步骤:
1、使用getPredefinedDictionary创建一个字典
2、读取每一帧,使用detectMarkers检测当前帧中的Markers
3、使用estimatePoseSingleMarkers估计Marker的位姿,得到的即是即是R和t

#include <QCoreApplication>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/opencv.hpp>
#include <cv.h>
#include <iostream>
#include <highgui.h>
#include <opencv2/aruco.hpp>
#include <stdio.h>using namespace cv;
using namespace std;int main(int argc, char *argv[]){
//内参与畸变矩阵,笔者在前面的博客已经给出求解方法,有需要的可以找找看看double fx,fy,cx,cy,k1,k2,k3,p1,p2;fx=955.8925;fy=955.4439;cx=296.9006;cy=215.9074;k1=-0.1523;k2=0.7722;k3=0;p1=0;p2=0;Mat cameraMatrix = (cv::Mat_<float>(3, 3) <<fx, 0.0, cx,0.0, fy, cy,0.0, 0.0, 1.0);Mat distCoeffs = (cv::Mat_<float>(5, 1) << k1, k2, p1, p2, k3);cv::VideoCapture inputVideo;inputVideo.open(0);cv::Ptr<cv::aruco::Dictionary> dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);while (inputVideo.grab()) {cv::Mat image, imageCopy;inputVideo.retrieve(image);//抓取视频中的一张照片image.copyTo(imageCopy);std::vector<int> ids;std::vector<std::vector<cv::Point2f>> corners;cv::aruco::detectMarkers(image, dictionary, corners, ids);//检测靶标// if at least one marker detectedif (ids.size() > 0) {cv::aruco::drawDetectedMarkers(imageCopy, corners, ids);//绘制检测到的靶标的框std::vector<cv::Vec3d> rvecs, tvecs;cv::aruco::estimatePoseSingleMarkers(corners, 0.055, cameraMatrix, distCoeffs, rvecs, tvecs);//求解旋转矩阵rvecs和平移矩阵tvecs//cout<<"R :"<<rvecs[0]<<endl;cout<<"T :"<<tvecs[0]<<endl;// draw axis for each markerfor(int i=0; i<ids.size(); i++)cv::aruco::drawAxis(imageCopy, cameraMatrix, distCoeffs, rvecs[i], tvecs[i], 0.1);}cv::imshow("out", imageCopy);cv::waitKey(50);//if (key == 27)1// break;}
return 0;
}

运行对着你指定的靶标就可以出结果啦。

这篇关于使用opencv的aruco库进行位姿估计(得到的是旋转矩阵与平移矩阵)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507200

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin